February  2007, 1(1): 47-62. doi: 10.3934/ipi.2007.1.47

Integrodifferential equations for continuous multiscale wavelet shrinkage

1. 

Department of Mathematics and Computer Science, Saarland University, Building E1 1, 66041 Saarbrücken, Germany, Germany

Received  September 2006 Revised  September 2006 Published  January 2007

The relations between wavelet shrinkage and nonlinear diffusion for discontinuity-preserving signal denoising are fairly well-understood for single-scale wavelet shrinkage, but not for the practically relevant multiscale case. In this paper we show that 1-D multiscale continuous wavelet shrinkage can be linked to novel integrodifferential equations. They differ from nonlinear diffusion filtering and corresponding regularisation methods by the fact that they involve smoothed derivative operators and perform a weighted averaging over all scales. Moreover, by expressing the convolution-based smoothed derivative operators by power series of differential operators, we show that multiscale wavelet shrinkage can also be regarded as averaging over pseudodifferential equations.
Citation: Stephan Didas, Joachim Weickert. Integrodifferential equations for continuous multiscale wavelet shrinkage. Inverse Problems and Imaging, 2007, 1 (1) : 47-62. doi: 10.3934/ipi.2007.1.47
[1]

John B. Greer, Andrea L. Bertozzi. $H^1$ Solutions of a class of fourth order nonlinear equations for image processing. Discrete and Continuous Dynamical Systems, 2004, 10 (1&2) : 349-366. doi: 10.3934/dcds.2004.10.349

[2]

Kristian Bredies. Weak solutions of linear degenerate parabolic equations and an application in image processing. Communications on Pure and Applied Analysis, 2009, 8 (4) : 1203-1229. doi: 10.3934/cpaa.2009.8.1203

[3]

Min He. A class of integrodifferential equations and applications. Conference Publications, 2005, 2005 (Special) : 386-396. doi: 10.3934/proc.2005.2005.386

[4]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems and Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

[5]

Luca Calatroni, Bertram Düring, Carola-Bibiane Schönlieb. ADI splitting schemes for a fourth-order nonlinear partial differential equation from image processing. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 931-957. doi: 10.3934/dcds.2014.34.931

[6]

Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems and Imaging, 2013, 7 (3) : 777-794. doi: 10.3934/ipi.2013.7.777

[7]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete and Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

[8]

Yan Jin, Jürgen Jost, Guofang Wang. A new nonlocal variational setting for image processing. Inverse Problems and Imaging, 2015, 9 (2) : 415-430. doi: 10.3934/ipi.2015.9.415

[9]

Yong Zheng Ong, Haizhao Yang. Generative imaging and image processing via generative encoder. Inverse Problems and Imaging, 2022, 16 (3) : 525-545. doi: 10.3934/ipi.2021060

[10]

Lu Tan, Ling Li, Senjian An, Zhenkuan Pan. Nonlinear diffusion based image segmentation using two fast algorithms. Mathematical Foundations of Computing, 2019, 2 (2) : 149-168. doi: 10.3934/mfc.2019011

[11]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4963-4998. doi: 10.3934/dcdsb.2020321

[12]

Shuai Ren, Tao Zhang, Fangxia Shi. Characteristic analysis of carrier based on the filtering and a multi-wavelet method for the information hiding. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1291-1299. doi: 10.3934/dcdss.2015.8.1291

[13]

Paola Loreti, Daniela Sforza. Inverse observability inequalities for integrodifferential equations in square domains. Evolution Equations and Control Theory, 2018, 7 (1) : 61-77. doi: 10.3934/eect.2018004

[14]

Yang Wang, Yi-fu Feng. $ \theta $ scheme with two dimensional wavelet-like incremental unknowns for a class of porous medium diffusion-type equations. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 461-481. doi: 10.3934/naco.2019027

[15]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems and Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[16]

Zbigniew Gomolka, Boguslaw Twarog, Jacek Bartman. Improvement of image processing by using homogeneous neural networks with fractional derivatives theorem. Conference Publications, 2011, 2011 (Special) : 505-514. doi: 10.3934/proc.2011.2011.505

[17]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[18]

Tong Li, Jeungeun Park. Stability of traveling waves of models for image processing with non-convex nonlinearity. Communications on Pure and Applied Analysis, 2018, 17 (3) : 959-985. doi: 10.3934/cpaa.2018047

[19]

Antoni Buades, Bartomeu Coll, Jose-Luis Lisani, Catalina Sbert. Conditional image diffusion. Inverse Problems and Imaging, 2007, 1 (4) : 593-608. doi: 10.3934/ipi.2007.1.593

[20]

H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of an HIV model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 213-236. doi: 10.3934/mbe.2010.7.213

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (102)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]