August  2007, 1(3): 577-592. doi: 10.3934/ipi.2007.1.577

A variational approach to waveform design for synthetic-aperture imaging


Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, United States, United States, United States

Received  February 2007 Published  July 2007

We derive an optimal transmit waveform for filtered backprojection-based synthetic-aperture imaging. The waveform is optimal in terms of minimising the mean square error (MSE) in the resulting image. Our optimization is performed in two steps: First, we consider the minimum-mean-square-error (MMSE) for an arbitrary but fixed waveform, and derive the corresponding filter for the filtered backprojection reconstruction. Second, the MMSE is further reduced by finding an optimal transmit waveform. The transmit waveform is derived for stochastic models of the scattering objects of interest (targets), other scattering objects (clutter), and additive noise. We express the waveform in terms of spatial spectra for the random fields associated with target and clutter, and the spectrum for the noise process. This approach results in a constraint that involves only the amplitude of the Fourier transform of the transmit waveform. Therefore, considerable flexibility is left for incorporating additional requirements, such as minimal variation of transmit amplitude and phase-coding.
Citation: T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for synthetic-aperture imaging. Inverse Problems and Imaging, 2007, 1 (3) : 577-592. doi: 10.3934/ipi.2007.1.577

Kaitlyn Muller. The relationship between backprojection and best linear unbiased estimation in synthetic-aperture radar imaging. Inverse Problems and Imaging, 2016, 10 (2) : 549-561. doi: 10.3934/ipi.2016011


Mikhail Gilman, Semyon Tsynkov. Statistical characterization of scattering delay in synthetic aperture radar imaging. Inverse Problems and Imaging, 2020, 14 (3) : 511-533. doi: 10.3934/ipi.2020024


Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659


Seonho Park, Maciej Rysz, Kaitlin L. Fair, Panos M. Pardalos. Synthetic-Aperture Radar image based positioning in GPS-denied environments using Deep Cosine Similarity Neural Networks. Inverse Problems and Imaging, 2021, 15 (4) : 763-785. doi: 10.3934/ipi.2021013


Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056


Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341


Lei Zhang, Luming Jia. Near-field imaging for an obstacle above rough surfaces with limited aperture data. Inverse Problems and Imaging, 2021, 15 (5) : 975-997. doi: 10.3934/ipi.2021024


Mikhail Gilman, Semyon Tsynkov. A mathematical perspective on radar interferometry. Inverse Problems and Imaging, 2022, 16 (1) : 119-152. doi: 10.3934/ipi.2021043


Pierre-Emmanuel Mazaré, Olli-Pekka Tossavainen, Daniel B. Work. Computing travel times from filtered traffic states. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 557-578. doi: 10.3934/dcdss.2014.7.557


Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems and Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665


Filipa Caetano, Martin J. Gander, Laurence Halpern, Jérémie Szeftel. Schwarz waveform relaxation algorithms for semilinear reaction-diffusion equations. Networks and Heterogeneous Media, 2010, 5 (3) : 487-505. doi: 10.3934/nhm.2010.5.487


Josselin Garnier, Knut Solna. Filtered Kirchhoff migration of cross correlations of ambient noise signals. Inverse Problems and Imaging, 2011, 5 (2) : 371-390. doi: 10.3934/ipi.2011.5.371


Yu-Chi Chen. Security analysis of public key encryption with filtered equality test. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021053


Cicely K. Macnamara, Mark A. J. Chaplain. Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences & Engineering, 2017, 14 (1) : 249-262. doi: 10.3934/mbe.2017016


Masaru Ikehata, Esa Niemi, Samuli Siltanen. Inverse obstacle scattering with limited-aperture data. Inverse Problems and Imaging, 2012, 6 (1) : 77-94. doi: 10.3934/ipi.2012.6.77


Thi-Thao-Phuong Hoang. Optimized Ventcel-Schwarz waveform relaxation and mixed hybrid finite element method for transport problems. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022060


Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1


Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems and Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013


Laurent Bourgeois, Jean-François Fritsch, Arnaud Recoquillay. Imaging junctions of waveguides. Inverse Problems and Imaging, 2021, 15 (2) : 285-314. doi: 10.3934/ipi.2020065


Simone Fiori, Italo Cervigni, Mattia Ippoliti, Claudio Menotta. Synthetic nonlinear second-order oscillators on Riemannian manifolds and their numerical simulation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (3) : 1227-1262. doi: 10.3934/dcdsb.2021088

2021 Impact Factor: 1.483


  • PDF downloads (75)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]