November  2007, 1(4): 609-622. doi: 10.3934/ipi.2007.1.609

Shape reconstruction of acoustic obstacles from the modulus of the far field pattern

1. 

Institut für Numerische und Angewandte Mathematik, University of Göttingen, Lotzestr. 16-18, 37083, Göttingen, Germany

Received  February 2007 Published  October 2007

We consider the inverse problem of time-harmonic acoustic wave scattering where the shape of an obstacle is reconstructed from a given incident field and the modulus of the far field pattern of the scattered field. Our approach is based on a pair of nonlinear and ill-posed integral equations to be solved for the shape of the unknown boundary. This approach is an extension of the method suggested by Kress and Rundell [5] for an inverse boundary value problem for the Laplace equation. Since the modulus of far field pattern is invariant under translations [4] we can reconstruct the shape of the obstacle but not the location.
    The numerical implementation of the method is described and it is illustrated by numerical examples that the method yields satisfactory reconstructions both for sound-soft and sound-hard obstacles, also in the case when the modulus is given in a limited aperture.
Citation: Olha Ivanyshyn. Shape reconstruction of acoustic obstacles from the modulus of the far field pattern. Inverse Problems & Imaging, 2007, 1 (4) : 609-622. doi: 10.3934/ipi.2007.1.609
[1]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[2]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[3]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[4]

Xiaoxu Xu, Bo Zhang, Haiwen Zhang. Uniqueness in inverse acoustic and electromagnetic scattering with phaseless near-field data at a fixed frequency. Inverse Problems & Imaging, 2020, 14 (3) : 489-510. doi: 10.3934/ipi.2020023

[5]

Shitao Liu, Roberto Triggiani. Determining damping and potential coefficients of an inverse problem for a system of two coupled hyperbolic equations. Part I: Global uniqueness. Conference Publications, 2011, 2011 (Special) : 1001-1014. doi: 10.3934/proc.2011.2011.1001

[6]

Fenglong Qu, Jiaqing Yang. On recovery of an inhomogeneous cavity in inverse acoustic scattering. Inverse Problems & Imaging, 2018, 12 (2) : 281-291. doi: 10.3934/ipi.2018012

[7]

Lu Zhao, Heping Dong, Fuming Ma. Inverse obstacle scattering for acoustic waves in the time domain. Inverse Problems & Imaging, 2021, 15 (5) : 1269-1286. doi: 10.3934/ipi.2021037

[8]

Heping Dong, Deyue Zhang, Yukun Guo. A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data. Inverse Problems & Imaging, 2019, 13 (1) : 177-195. doi: 10.3934/ipi.2019010

[9]

Deyue Zhang, Yukun Guo. Some recent developments in the unique determinations in phaseless inverse acoustic scattering theory. Electronic Research Archive, 2021, 29 (2) : 2149-2165. doi: 10.3934/era.2020110

[10]

Mourad Sini, Nguyen Trung Thành. Inverse acoustic obstacle scattering problems using multifrequency measurements. Inverse Problems & Imaging, 2012, 6 (4) : 749-773. doi: 10.3934/ipi.2012.6.749

[11]

Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems & Imaging, 2021, 15 (5) : 1247-1267. doi: 10.3934/ipi.2021036

[12]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete & Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[13]

Zhigang Wang. Vanishing viscosity limit of the rotating shallow water equations with far field vacuum. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 311-328. doi: 10.3934/dcds.2018015

[14]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks & Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[15]

Giorgio Menegatti, Luca Rondi. Stability for the acoustic scattering problem for sound-hard scatterers. Inverse Problems & Imaging, 2013, 7 (4) : 1307-1329. doi: 10.3934/ipi.2013.7.1307

[16]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

[17]

Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367

[18]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[19]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[20]

Marc Bonnet. Inverse acoustic scattering using high-order small-inclusion expansion of misfit function. Inverse Problems & Imaging, 2018, 12 (4) : 921-953. doi: 10.3934/ipi.2018039

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (148)
  • HTML views (0)
  • Cited by (50)

Other articles
by authors

[Back to Top]