November  2007, 1(4): 623-642. doi: 10.3934/ipi.2007.1.623

Two-Dimensional tomography with unknown view angles

1. 

Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 Helsinki,, Finland

2. 

Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 Helsinki, Finland

Received  January 2007 Published  October 2007

We consider uniqueness of two-dimensional parallel beam tomography with unknown view angles. We show that infinitely many projections at unknown view angles of a sufficiently asymmetric object determine the object uniquely. An explicit expression for the required asymmetry is given in terms of the object's geometric moments. We also show that under certain assumptions finitely many projections guarantee uniqueness for the unknown view angles. Compared to previous results about uniqueness of view angles, our result reduces the minimum number of required projections to approximately half and is applicable to a larger set of objects. Our analysis is based on algebraic geometric properties of a certain system of homogeneous polynomials determined by the Helgason-Ludwig consistency conditions.
Citation: Lars Lamberg, Lauri Ylinen. Two-Dimensional tomography with unknown view angles. Inverse Problems and Imaging, 2007, 1 (4) : 623-642. doi: 10.3934/ipi.2007.1.623
[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[2]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems and Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[3]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[4]

Dmitry Kleinbock, Barak Weiss. Dirichlet's theorem on diophantine approximation and homogeneous flows. Journal of Modern Dynamics, 2008, 2 (1) : 43-62. doi: 10.3934/jmd.2008.2.43

[5]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[6]

Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the Birkoff-Kellogg theorem. Conference Publications, 2007, 2007 (Special) : 260-268. doi: 10.3934/proc.2007.2007.260

[7]

Nimish Shah, Lei Yang. Equidistribution of curves in homogeneous spaces and Dirichlet's approximation theorem for matrices. Discrete and Continuous Dynamical Systems, 2020, 40 (9) : 5247-5287. doi: 10.3934/dcds.2020227

[8]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[9]

Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems and Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173

[10]

Aki Pulkkinen, Ville Kolehmainen, Jari P. Kaipio, Benjamin T. Cox, Simon R. Arridge, Tanja Tarvainen. Approximate marginalization of unknown scattering in quantitative photoacoustic tomography. Inverse Problems and Imaging, 2014, 8 (3) : 811-829. doi: 10.3934/ipi.2014.8.811

[11]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic and Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[12]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[13]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[14]

Pengyan Wang, Pengcheng Niu. Liouville's theorem for a fractional elliptic system. Discrete and Continuous Dynamical Systems, 2019, 39 (3) : 1545-1558. doi: 10.3934/dcds.2019067

[15]

Jacques Féjoz. On "Arnold's theorem" on the stability of the solar system. Discrete and Continuous Dynamical Systems, 2013, 33 (8) : 3555-3565. doi: 10.3934/dcds.2013.33.3555

[16]

Henk Broer, Konstantinos Efstathiou, Olga Lukina. A geometric fractional monodromy theorem. Discrete and Continuous Dynamical Systems - S, 2010, 3 (4) : 517-532. doi: 10.3934/dcdss.2010.3.517

[17]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[18]

Ugo Bessi. Another point of view on Kusuoka's measure. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3241-3271. doi: 10.3934/dcds.2020404

[19]

R. S. Johnson. The ocean and the atmosphere: An applied mathematician's view. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2357-2381. doi: 10.3934/cpaa.2022040

[20]

Lars Lamberg. Unique recovery of unknown projection orientations in three-dimensional tomography. Inverse Problems and Imaging, 2008, 2 (4) : 547-575. doi: 10.3934/ipi.2008.2.547

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (84)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]