November  2007, 1(4): 673-690. doi: 10.3934/ipi.2007.1.673

On the application of projection methods for computing optical flow fields

1. 

Fakultät für Maschinenbau, Helmut--Schmidt--Universität, Holstenhofweg 85, 22043 Hamburg, Germany

2. 

Fakultät für Mathematik und Informatik, Universität des Saarlandes, Geb. E1.1, 66041 Saarbrücken, Germany

Received  May 2007 Published  October 2007

Detecting optical flow means to find the apparent displacement field in a sequence of images. As starting point for many optical flow methods serves the so called optical flow constraint (OFC), that is the assumption that the gray value of a moving point does not change over time. Variational methods are amongst the most popular tools to compute the optical flow field. They compute the flow field as minimizer of an energy functional that consists of a data term to comply with the OFC and a smoothness term to obtain uniqueness of this underdetermined problem. In this article we replace the smoothness term by projecting the solution to a finite dimensional, affine subspace in the spatial variables which leads to a smoothing and gives a unique solution as well. We explain the mathematical details for the quadratic and nonquadratic minimization framework, and show how alternative model assumptions such as constancy of the brightness gradient can be incorporated. As basis functions we consider tensor products of B-splines. Under certain smoothness assumptions for the global minimizer in Sobolev scales, we prove optimal convergence rates in terms of the energy functional. Experiments are presented that demonstrate the feasibility of our approach.
Citation: Thomas Schuster, Joachim Weickert. On the application of projection methods for computing optical flow fields. Inverse Problems & Imaging, 2007, 1 (4) : 673-690. doi: 10.3934/ipi.2007.1.673
[1]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[2]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[3]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[4]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[5]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[6]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[7]

Andrew D. Lewis. Erratum for "nonholonomic and constrained variational mechanics". Journal of Geometric Mechanics, 2020, 12 (4) : 671-675. doi: 10.3934/jgm.2020033

[8]

Buddhadev Pal, Pankaj Kumar. A family of multiply warped product semi-Riemannian Einstein metrics. Journal of Geometric Mechanics, 2020, 12 (4) : 553-562. doi: 10.3934/jgm.2020017

[9]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[11]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]