\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Inverse problems for quantum trees

Abstract Related Papers Cited by
  • Three different inverse problems for the Schrödinger operator on a metric tree are considered, so far with standard boundary conditions at the vertices. These inverse problems are connected with the matrix Titchmarsh-Weyl function, response operator (dynamic Dirichlet-to-Neumann map) and scattering matrix. Our approach is based on the boundary control (BC) method and in particular on the study of the response operator. It is proven that the response operator determines the quantum tree completely, i.e. its connectivity, lengths of the edges and potentials on them. The same holds if the response operator is known for all but one boundary points, as well as for the Titchmarsh-Weyl function and scattering matrix. If the connectivity of the graph is known, then the lengths of the edges and the corresponding potentials are determined by just the diagonal terms of the data.
    Mathematics Subject Classification: Primary: 35R30, 81U20, 93B05; Secondary: 35L05, 49J15.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(87) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return