Citation: |
[1] |
D. P. Bertsekas, On the Goldstein-Levitin-Poljak gradient projection method, IEEE Transactions on Automatic Control, 21 (1976), 174-184.doi: 10.1109/TAC.1976.1101194. |
[2] |
Johnathan M. Bardsley and James G. Nagy, Covariance-preconditioned iterative methods for nonnegatively constrained astronomical imaging, SIAM Journal on Matrix Analysis and Applications, 27 (2006), 1184-1197.doi: 10.1137/040615043. |
[3] |
J. M. Bardsley and C. R. Vogel, A nonnnegatively constrained convex programming method for image reconstruction, SIAM Journal on Scientific Computing, 25 (2004), 1326-1343 (electronic).doi: 10.1137/S1064827502410451. |
[4] |
Johnathan M. Bardsley and Aaron Luttman, Total variation-penalized Poisson likelihood estimation for ill-posed problems, accepted, Advances in Computational Mathematics, Special Issue on Mathematical Imaging, University of Montana Technical Report #8, 2006. |
[5] |
P. H. Calamai and J. J. Moré, Projected gradient methods for linearly constrained problems, Mathematical Programming, 39 (1987), 93-116.doi: 10.1007/BF02592073. |
[6] |
D. Calvetti, G. Landi, L. Reichel and S. Sgallari, Non-negativity and iterative methods for ill-posed problems, Inverse Problems, 20 (2004), 1747-1758.doi: 10.1088/0266-5611/20/6/003. |
[7] |
Daniela Calvetti and Erkki Somersalo, A Gaussian hypermodel for recovering blocky objects, Inverse Problems, 23 (2007), 733-754.doi: 10.1088/0266-5611/23/2/016. |
[8] |
Torbjørn Eltoft and Taesu Kim, On the multivariate Laplace distribution, IEEE Signal Processing Letters, 13 (2006), 300-303.doi: 10.1109/LSP.2006.870353. |
[9] |
J. W. Goodman, "Introduction to Fourier Optics," 2nd Edition, McGraw-Hill, 1996. |
[10] |
M. Green, Statistics of images, the TV algorithm of Rudin-Osher-Fatemi for image denoising, and an improved denoising algorithm, CAM Report 02-55, UCLA, October 2002. |
[11] |
Jinggang Huang and David Mumford, Statistics of natural images and models, in "Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition," 1999, 541-547. |
[12] |
Jari Kaipio and Erkki Somersalo, "Satistical and Computational Inverse Problems," Applied Mathematical Sciences, 160, Springer-Verlag, New York, 2005. |
[13] |
C. T. Kelley, "Iterative Methods for Optimization," Frontiers in Applied Mathematics, 18, SIAM, Philadelphia, 1999. |
[14] |
J. J. Moré and G. Toraldo, On the solution of large quadratic programming problems with bound constraints, SIAM Journal on Optimization, 1 (1991), 93-113.doi: 10.1137/0801008. |
[15] |
J. Nagy and Z. Strakoš, Enforcing nonnegativity in image reconstruction algorithms, Mathematical Modeling, Estimation, and Imaging, David C. Wilson, et.al., Eds., 4121 (2000), 182-190. |
[16] |
J. Nocedal and S. Wright, "Numerical Optimization," Series in Operations Research. Springer-Verlag, New York, 1999.doi: 10.1007/b98874. |
[17] |
R. T. Rockafellar, "Convex Analysis," Princeton University Press, 1970. |
[18] |
L. I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259-268.doi: 10.1016/0167-2789(92)90242-F. |
[19] |
D. L. Snyder, A. M. Hammoud and R. L. White, Image recovery from data acquired with a charge-coupled-device camera, Journal of the Optical Society of America A, 10 (1993), 1014-1023.doi: 10.1364/JOSAA.10.001014. |
[20] |
C. R. Vogel, Computational methods for inverse problems, With a foreword by H. T. Banks. Frontiers in Applied Mathematics, 23, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. |
[21] |
C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy, blurred images, IEEE Transactions on Image Processing, 7 (1998), 813-824.doi: 10.1109/83.679423. |