-
Previous Article
A nonstandard smoothing in reconstruction of apparent diffusion coefficient profiles from diffusion weighted images
- IPI Home
- This Issue
-
Next Article
An efficient computational method for total variation-penalized Poisson likelihood estimation
Two-phase approach for deblurring images corrupted by impulse plus gaussian noise
1. | Temasek Laboratories and Department Mathematics, National University of Singapore, 2 Science Drive 2, 117543, Singapore |
2. | Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China |
3. | CMLA, ENS Cachan, CNRS, PRES UniverSud, 61 Av. President Wilson, F-94230 Cachan |
References:
[1] |
L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence,, Communications on Pure and Applied Mathematics, 43 (1990), 999.
doi: 10.1002/cpa.3160430805. |
[2] |
J. Astola and P. Kuosmanen, "Fundamentals of Nonlinear Digital Filtering,", Boca Rator, (1997). Google Scholar |
[3] |
G. Aubert and P. Kornprobst, "Mathematical Problems in Images Processing,", Partial differential equations and the calculus of variations. With a foreword by Olivier Faugeras, (2002).
|
[4] |
L. Bar, A. Brook, N. Sochen and N. Kiryati, Deblurring of color images corrupted by salt-and-pepper noise,, IEEE Transactions on Image Processing, 16 (2007), 1101.
doi: 10.1109/TIP.2007.891805. |
[5] |
L. Bar, N. Sochen and N. Kiryati, Image deblurring in the presence of salt-and-pepper noise,, in, 3439 (2005), 107.
doi: 10.1007/11408031_10. |
[6] |
L. Bar, N. Sochen and N. Kiryati, Image deblurring in the presence of impulsive noise,, International Journal of Computer Vision, 70 (2006), 279.
doi: 10.1007/s11263-006-6468-1. |
[7] |
A. Ben Hamza and H. Krim, Image denoising: a nonlinear robust statistical approach,, IEEE Transactions on Signal Processing, 49 (2001), 3045.
doi: 10.1109/78.969512. |
[8] |
A. Blake and A. Zisserman, "Visual Reconstruction,", The MIT Press, (1987).
|
[9] |
A. Bovik, "Handbook of Image and Video Processing,", Academic Press, (2000). Google Scholar |
[10] |
R. H. Chan, C. W. Ho and M. Nikolova, Salt-and-pepper noise removal by median-type noise detector and edge-preserving regularization,, IEEE Transactions on Image Processing, 14 (2005), 1479.
doi: 10.1109/TIP.2005.852196. |
[11] |
R. H. Chan, C. Hu and M. Nikolova, An iterative procedure for removing random-valued impulse noise,, IEEE Signal Processing Letters, 11 (2004), 921.
doi: 10.1109/LSP.2004.838190. |
[12] |
P. Charbonnier, L. Blanc-Féraud, G. Aubert and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, IEEE Transactions on Image Processing, 6 (1997), 298.
doi: 10.1109/83.551699. |
[13] |
G. Demoment, Image reconstruction and restoration : overview of common estimation structure and problems,, IEEE Transactions on Acoustics, 37 (1989), 2024.
doi: 10.1109/29.45551. |
[14] |
S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, European Journal of Applied Mathematics, 13 (2002), 353.
doi: 10.1017/S0956792502004904. |
[15] |
R. Garnett, T. Huegerich, C. Chui and W. He, A universal noise removal algorithm with an impulse detector,, IEEE Transactions on Image Processing, 14 (2005), 1747.
doi: 10.1109/TIP.2005.857261. |
[16] |
D. Geman and G. Reynolds, Constrained restoration and recovery of discontinuities,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (1992), 367.
doi: 10.1109/34.120331. |
[17] |
D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization,, IEEE Transactions on Image Processing, 4 (1995), 932.
doi: 10.1109/83.392335. |
[18] |
J. G. Gonzalez and G. R. Arce, Optimality of the myriad filter in practical impulsive-noise environments,, IEEE Transactions on Signal Processing, 49 (2001), 438.
doi: 10.1109/78.902126. |
[19] |
R. C. Hardie and K. E. Barner, Rank conditioned rank selection filters for signal restoration,, IEEE Transactions on Image Processing, 3 (1994), 192.
doi: 10.1109/83.277900. |
[20] |
H. Hwang and R. A. Haddad, Adaptive median filters: new algorithms and results,, IEEE Transactions on Image Processing, 4 (1995), 499.
doi: 10.1109/83.370679. |
[21] |
S.-J. Ko and Y. H. Lee, Center weighted median filters and their applications to image enhancement,, IEEE Transactions on Circuits and Systems, 38 (1991), 984.
doi: 10.1109/31.83870. |
[22] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577.
doi: 10.1002/cpa.3160420503. |
[23] |
NASA, Help for DESPIKE, The VICAR Image Processing System,, , (1999). Google Scholar |
[24] |
M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers,, SIAM Journal on Numerical Analysis, 40 (2002), 965.
doi: 10.1137/S0036142901389165. |
[25] |
M. Nikolova, A variational approach to remove outliers and impulse noise, Special issue on mathematics and image analysis,, Journal of Mathematical Imaging and Vision, 20 (2004), 99.
doi: 10.1023/B:JMIV.0000011920.58935.9c. |
[26] |
M. Nikolova, Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares,, SIAM Journal on Multiscale Modeling and Simulation, 4 (2005), 960.
doi: 10.1137/040619582. |
[27] |
M. Nikolova and R. H. Chan, The equivalence of half-quadratic minimization and the gradient linearization iteration,, IEEE Transactions on Image Processing, 16 (2007), 1623.
doi: 10.1109/TIP.2007.896622. |
[28] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[29] |
A. Tarantola, "Inverse Problem Theory. Methods for Data Fitting and Model Parameter Estimation,", Elsevier Science Publishers, (1987).
|
[30] |
A. Tikhonov and V. Arsenin, "Solutions of Ill-Posed Problems,", Translated from the Russian. Preface by translation editor Fritz John. Scripta Series in Mathematics. V. H. Winston & Sons, (1977).
|
[31] |
C. Vogel, "Computational Methods for Inverse Problems,", SIAM (Frontiers in Applied Mathematics Series, (2002).
|
show all references
References:
[1] |
L. Ambrosio and V. M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via $\Gamma$-convergence,, Communications on Pure and Applied Mathematics, 43 (1990), 999.
doi: 10.1002/cpa.3160430805. |
[2] |
J. Astola and P. Kuosmanen, "Fundamentals of Nonlinear Digital Filtering,", Boca Rator, (1997). Google Scholar |
[3] |
G. Aubert and P. Kornprobst, "Mathematical Problems in Images Processing,", Partial differential equations and the calculus of variations. With a foreword by Olivier Faugeras, (2002).
|
[4] |
L. Bar, A. Brook, N. Sochen and N. Kiryati, Deblurring of color images corrupted by salt-and-pepper noise,, IEEE Transactions on Image Processing, 16 (2007), 1101.
doi: 10.1109/TIP.2007.891805. |
[5] |
L. Bar, N. Sochen and N. Kiryati, Image deblurring in the presence of salt-and-pepper noise,, in, 3439 (2005), 107.
doi: 10.1007/11408031_10. |
[6] |
L. Bar, N. Sochen and N. Kiryati, Image deblurring in the presence of impulsive noise,, International Journal of Computer Vision, 70 (2006), 279.
doi: 10.1007/s11263-006-6468-1. |
[7] |
A. Ben Hamza and H. Krim, Image denoising: a nonlinear robust statistical approach,, IEEE Transactions on Signal Processing, 49 (2001), 3045.
doi: 10.1109/78.969512. |
[8] |
A. Blake and A. Zisserman, "Visual Reconstruction,", The MIT Press, (1987).
|
[9] |
A. Bovik, "Handbook of Image and Video Processing,", Academic Press, (2000). Google Scholar |
[10] |
R. H. Chan, C. W. Ho and M. Nikolova, Salt-and-pepper noise removal by median-type noise detector and edge-preserving regularization,, IEEE Transactions on Image Processing, 14 (2005), 1479.
doi: 10.1109/TIP.2005.852196. |
[11] |
R. H. Chan, C. Hu and M. Nikolova, An iterative procedure for removing random-valued impulse noise,, IEEE Signal Processing Letters, 11 (2004), 921.
doi: 10.1109/LSP.2004.838190. |
[12] |
P. Charbonnier, L. Blanc-Féraud, G. Aubert and M. Barlaud, Deterministic edge-preserving regularization in computed imaging, IEEE Transactions on Image Processing, 6 (1997), 298.
doi: 10.1109/83.551699. |
[13] |
G. Demoment, Image reconstruction and restoration : overview of common estimation structure and problems,, IEEE Transactions on Acoustics, 37 (1989), 2024.
doi: 10.1109/29.45551. |
[14] |
S. Esedoglu and J. Shen, Digital inpainting based on the Mumford-Shah-Euler image model, European Journal of Applied Mathematics, 13 (2002), 353.
doi: 10.1017/S0956792502004904. |
[15] |
R. Garnett, T. Huegerich, C. Chui and W. He, A universal noise removal algorithm with an impulse detector,, IEEE Transactions on Image Processing, 14 (2005), 1747.
doi: 10.1109/TIP.2005.857261. |
[16] |
D. Geman and G. Reynolds, Constrained restoration and recovery of discontinuities,, IEEE Transactions on Pattern Analysis and Machine Intelligence, 14 (1992), 367.
doi: 10.1109/34.120331. |
[17] |
D. Geman and C. Yang, Nonlinear image recovery with half-quadratic regularization,, IEEE Transactions on Image Processing, 4 (1995), 932.
doi: 10.1109/83.392335. |
[18] |
J. G. Gonzalez and G. R. Arce, Optimality of the myriad filter in practical impulsive-noise environments,, IEEE Transactions on Signal Processing, 49 (2001), 438.
doi: 10.1109/78.902126. |
[19] |
R. C. Hardie and K. E. Barner, Rank conditioned rank selection filters for signal restoration,, IEEE Transactions on Image Processing, 3 (1994), 192.
doi: 10.1109/83.277900. |
[20] |
H. Hwang and R. A. Haddad, Adaptive median filters: new algorithms and results,, IEEE Transactions on Image Processing, 4 (1995), 499.
doi: 10.1109/83.370679. |
[21] |
S.-J. Ko and Y. H. Lee, Center weighted median filters and their applications to image enhancement,, IEEE Transactions on Circuits and Systems, 38 (1991), 984.
doi: 10.1109/31.83870. |
[22] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems,, Communications on Pure and Applied Mathematics, 42 (1989), 577.
doi: 10.1002/cpa.3160420503. |
[23] |
NASA, Help for DESPIKE, The VICAR Image Processing System,, , (1999). Google Scholar |
[24] |
M. Nikolova, Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers,, SIAM Journal on Numerical Analysis, 40 (2002), 965.
doi: 10.1137/S0036142901389165. |
[25] |
M. Nikolova, A variational approach to remove outliers and impulse noise, Special issue on mathematics and image analysis,, Journal of Mathematical Imaging and Vision, 20 (2004), 99.
doi: 10.1023/B:JMIV.0000011920.58935.9c. |
[26] |
M. Nikolova, Analysis of the recovery of edges in images and signals by minimizing nonconvex regularized least-squares,, SIAM Journal on Multiscale Modeling and Simulation, 4 (2005), 960.
doi: 10.1137/040619582. |
[27] |
M. Nikolova and R. H. Chan, The equivalence of half-quadratic minimization and the gradient linearization iteration,, IEEE Transactions on Image Processing, 16 (2007), 1623.
doi: 10.1109/TIP.2007.896622. |
[28] |
L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.
doi: 10.1016/0167-2789(92)90242-F. |
[29] |
A. Tarantola, "Inverse Problem Theory. Methods for Data Fitting and Model Parameter Estimation,", Elsevier Science Publishers, (1987).
|
[30] |
A. Tikhonov and V. Arsenin, "Solutions of Ill-Posed Problems,", Translated from the Russian. Preface by translation editor Fritz John. Scripta Series in Mathematics. V. H. Winston & Sons, (1977).
|
[31] |
C. Vogel, "Computational Methods for Inverse Problems,", SIAM (Frontiers in Applied Mathematics Series, (2002).
|
[1] |
Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020467 |
[2] |
Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028 |
[3] |
Marc Homs-Dones. A generalization of the Babbage functional equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 899-919. doi: 10.3934/dcds.2020303 |
[4] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[5] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020375 |
[6] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[7] |
Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020049 |
[8] |
Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325 |
[9] |
Tian Ma, Shouhong Wang. Topological phase transition III: Solar surface eruptions and sunspots. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 501-514. doi: 10.3934/dcdsb.2020350 |
[10] |
Lin Shi, Dingshi Li, Kening Lu. Limiting behavior of unstable manifolds for spdes in varying phase spaces. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021020 |
[11] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[12] |
Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386 |
[13] |
Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003 |
[14] |
Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020321 |
[15] |
Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048 |
[16] |
Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351 |
[17] |
Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268 |
[18] |
Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089 |
[19] |
Yi-Ming Tai, Zhengyang Zhang. Relaxation oscillations in a spruce-budworm interaction model with Holling's type II functional response. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021027 |
[20] |
Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020 doi: 10.3934/jgm.2020031 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]