Citation: |
[1] |
G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108,doi: 10.1063/1.526755. |
[2] |
G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity, Wave Motion, 12 (1990), 15-52.doi: 10.1016/0165-2125(90)90017-X. |
[3] |
N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion," Springer-Verlag, New York, 2000. |
[4] |
M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), 301-312.doi: 10.1137/S0036144500368859. |
[5] |
M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers, Inverse Problems, 20 (2004), 1691-1711.doi: 10.1088/0266-5611/20/5/023. |
[6] |
J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, " Birkhauser, Boston, 1996. |
[7] |
R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves, Proc. SPIE 6513, 651304 (2007).doi: 10.1117/12.712569. |
[8] |
A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction," London Mathematical Sciety Lecture Note Series, 196,Cambridge University Press, 1994. |
[9] |
G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems," Adam Hilger, Philadelphia, 1988. |
[10] |
P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1, McGraw-Hill, 1953. |
[11] |
C. J. Nolan, Scattering near a fold caustic, SIAM J. of Appl. Math, 61 (2000), 659-672.doi: 10.1137/S0036139999356107. |
[12] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography, IEEE Trans. on Image Processing, 12 (2003), 1035-1043.doi: 10.1109/TIP.2003.814243. |
[13] |
C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-236.doi: 10.1088/0266-5611/18/1/315. |
[14] |
C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, J. Fourier Analysis and its Applications, 10 (2004), 133-148. |
[15] |
C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves, Inverse Problems, 22 (2006), 1817-1834,doi: 10.1088/0266-5611/22/5/017. |
[16] |
C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation, Comm. in PDE, 22, (1997), 919-952.doi: 10.1080/03605309708821289. |
[17] |
M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging, IEEE Trans. on Signal Processing, 39 (1991), 2044-2055.doi: 10.1109/78.134436. |
[18] |
X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics," CRC Press, Boca Raton, FL, 1991. |
[19] |
F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II, Plenum Press, New York-London, 1980. |
[20] |
L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540-1550.doi: 10.1109/36.718858. |
[21] |
L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, Orlando, FL, (1999). |
[22] |
C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories, submitted to IEEE-TIP, (2007). |