May  2008, 2(2): 225-250. doi: 10.3934/ipi.2008.2.225

Enhanced imaging from multiply scattered waves

1. 

Department of Mathematics and Statistics, University of Limerick, Castletroy, Limerick, Ireland

2. 

Department of Mathematics and Statistics, University of Limerick, Castletroy, Limeric, Ireland

Received  September 2007 Revised  December 2007 Published  April 2008

Many imaging methods involve probing a material with a wave and observing the back-scattered wave. The back-scattered wave measurements are used to compute an image of the internal structure of the material. Many of the conventional methods make the assumption that the wave has scattered just once from the region to be imaged before returning to the sensor to be recorded. The purpose of this paper is to show how this restriction can be partially removed and also how its removal leads to an enhanced image, free of the artifacts often associated with the conventionally reconstructed image.
Citation: Romina Gaburro, Clifford J Nolan. Enhanced imaging from multiply scattered waves. Inverse Problems and Imaging, 2008, 2 (2) : 225-250. doi: 10.3934/ipi.2008.2.225
References:
[1]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108, doi: 10.1063/1.526755.

[2]

G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity, Wave Motion, 12 (1990), 15-52. doi: 10.1016/0165-2125(90)90017-X.

[3]

N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion," Springer-Verlag, New York, 2000.

[4]

M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), 301-312. doi: 10.1137/S0036144500368859.

[5]

M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers, Inverse Problems, 20 (2004), 1691-1711. doi: 10.1088/0266-5611/20/5/023.

[6]

J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, " Birkhauser, Boston, 1996.

[7]

R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves, Proc. SPIE 6513, 651304 (2007). doi: 10.1117/12.712569.

[8]

A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction," London Mathematical Sciety Lecture Note Series, 196,Cambridge University Press, 1994.

[9]

G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems," Adam Hilger, Philadelphia, 1988.

[10]

P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1, McGraw-Hill, 1953.

[11]

C. J. Nolan, Scattering near a fold caustic, SIAM J. of Appl. Math, 61 (2000), 659-672. doi: 10.1137/S0036139999356107.

[12]

C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography, IEEE Trans. on Image Processing, 12 (2003), 1035-1043. doi: 10.1109/TIP.2003.814243.

[13]

C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-236. doi: 10.1088/0266-5611/18/1/315.

[14]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, J. Fourier Analysis and its Applications, 10 (2004), 133-148.

[15]

C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves, Inverse Problems, 22 (2006), 1817-1834, doi: 10.1088/0266-5611/22/5/017.

[16]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation, Comm. in PDE, 22, (1997), 919-952. doi: 10.1080/03605309708821289.

[17]

M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging, IEEE Trans. on Signal Processing, 39 (1991), 2044-2055. doi: 10.1109/78.134436.

[18]

X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics," CRC Press, Boca Raton, FL, 1991.

[19]

F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II, Plenum Press, New York-London, 1980.

[20]

L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540-1550. doi: 10.1109/36.718858.

[21]

L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, Orlando, FL, (1999).

[22]

C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories, submitted to IEEE-TIP, (2007).

show all references

References:
[1]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26 (1985), 99-108, doi: 10.1063/1.526755.

[2]

G. Beylkin and R. Burridge, Linearized inverse scattering problems in acoustic and elasticity, Wave Motion, 12 (1990), 15-52. doi: 10.1016/0165-2125(90)90017-X.

[3]

N. Bleistein, J. K. Cohen and J. W. Stockwell, "The Matematics of Multidimensional Seismic Inversion," Springer-Verlag, New York, 2000.

[4]

M. Cheney, A mathematical tutorial on synthetic aperture radar, SIAM Review, 43 (2001), 301-312. doi: 10.1137/S0036144500368859.

[5]

M. Cheney and R. J. Bonneau, Imaging that exploits multipath scattering from point scatterers, Inverse Problems, 20 (2004), 1691-1711. doi: 10.1088/0266-5611/20/5/023.

[6]

J. J. Duistermaat, "Fourier Integral Operators. Progress in Mathematics, 130, " Birkhauser, Boston, 1996.

[7]

R. Gaburro, C. J. Nolan, T. Dowling and M. Cheney, Imaging from multiply scattered waves, Proc. SPIE 6513, 651304 (2007). doi: 10.1117/12.712569.

[8]

A. Grigis and J. Sjöstrand, "Microlocal Analysis for Differential Operators: an Introduction," London Mathematical Sciety Lecture Note Series, 196,Cambridge University Press, 1994.

[9]

G. T. Herman, H. K. Tuy, K. J. Langenberg and P. C. Sabatier, "Basic Methods of Tomography and Inverse Problems," Adam Hilger, Philadelphia, 1988.

[10]

P. Morse and H. Feshbach, "Methods of Theoretical Physics," Vol. 1, McGraw-Hill, 1953.

[11]

C. J. Nolan, Scattering near a fold caustic, SIAM J. of Appl. Math, 61 (2000), 659-672. doi: 10.1137/S0036139999356107.

[12]

C. J. Nolan and M. Cheney, Synthetic aperture inversion for arbitrary flight paths and non-flat topography, IEEE Trans. on Image Processing, 12 (2003), 1035-1043. doi: 10.1109/TIP.2003.814243.

[13]

C. J. Nolan and M. Cheney, Synthetic aperture inversion, Inverse Problems, 18 (2002), 221-236. doi: 10.1088/0266-5611/18/1/315.

[14]

C. J. Nolan and M. Cheney, Microlocal analysis of synthetic aperture radar imaging, J. Fourier Analysis and its Applications, 10 (2004), 133-148.

[15]

C. J. Nolan, M. Cheney, T. Dowling and R. Gaburro, Enhanced angular resolution from multiply scattered waves, Inverse Problems, 22 (2006), 1817-1834, doi: 10.1088/0266-5611/22/5/017.

[16]

C. J. Nolan and W. W. Symes, Global solution of a linearized inverse problem for the acoustic wave equation, Comm. in PDE, 22, (1997), 919-952. doi: 10.1080/03605309708821289.

[17]

M. Soumekh, Bistatic synthetic aperture radar inversion with application in dynamic object imaging, IEEE Trans. on Signal Processing, 39 (1991), 2044-2055. doi: 10.1109/78.134436.

[18]

X. Saint Raymond, "Elementary Introduction to the Theory of Pseudodifferential Operators. Studies in Advanced Mathematics," CRC Press, Boca Raton, FL, 1991.

[19]

F. Treves, "Introduction to Pseudodifferential and Fourier Integral Operators," Vol. Iand II, Plenum Press, New York-London, 1980.

[20]

L. M. H. Ulander and P. O. Frölund, Ultra-wideband SAR interferometry, IEEE Trans. Geosci. Remote Sensing, 36 (1998), 1540-1550. doi: 10.1109/36.718858.

[21]

L. M. H. Ulander and H. Hellsten, Low-frequency ultra-wideband array-antenna SAR for stationary and moving target imaging, in Proce. Conf. SPIE 13th Annu. Int. Symp. Aerosense, Orlando, FL, (1999).

[22]

C. E. Yarman, B. Yazici and M. Cheney, Bistatic synthetic aperture radar imaging for arbitrary flight trajectories, submitted to IEEE-TIP, (2007).

[1]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[2]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[3]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026

[4]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056

[5]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[6]

Lorenz Kuger, Gaël Rigaud. On multiple scattering in Compton scattering tomography and its impact on fan-beam CT. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022029

[7]

Joost R. Santos. Interdependency analysis with multiple probabilistic sector inputs. Journal of Industrial and Management Optimization, 2008, 4 (3) : 489-510. doi: 10.3934/jimo.2008.4.489

[8]

Tan Bui-Thanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 1139-1155. doi: 10.3934/ipi.2013.7.1139

[9]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete and Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[10]

Lu Zhao, Heping Dong, Fuming Ma. Time-domain analysis of forward obstacle scattering for elastic wave. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4111-4130. doi: 10.3934/dcdsb.2020276

[11]

Evelyn K. Thomas, Katharine F. Gurski, Kathleen A. Hoffman. Analysis of SI models with multiple interacting populations using subpopulations. Mathematical Biosciences & Engineering, 2015, 12 (1) : 135-161. doi: 10.3934/mbe.2015.12.135

[12]

Shouyu Ma, Zied Jemai, Evren Sahin, Yves Dallery. Analysis of the Newsboy Problem subject to price dependent demand and multiple discounts. Journal of Industrial and Management Optimization, 2018, 14 (3) : 931-951. doi: 10.3934/jimo.2017083

[13]

Cheng-Dar Liou. Optimization analysis of the machine repair problem with multiple vacations and working breakdowns. Journal of Industrial and Management Optimization, 2015, 11 (1) : 83-104. doi: 10.3934/jimo.2015.11.83

[14]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems and Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

[15]

Jiying Liu, Jubo Zhu, Fengxia Yan, Zenghui Zhang. Compressive sampling and $l_1$ minimization for SAR imaging with low sampling rate. Inverse Problems and Imaging, 2013, 7 (4) : 1295-1305. doi: 10.3934/ipi.2013.7.1295

[16]

Dequan Yue, Wuyi Yue, Zsolt Saffer, Xiaohong Chen. Analysis of an M/M/1 queueing system with impatient customers and a variant of multiple vacation policy. Journal of Industrial and Management Optimization, 2014, 10 (1) : 89-112. doi: 10.3934/jimo.2014.10.89

[17]

Xin-You Meng, Yu-Qian Wu, Jie Li. Bifurcation analysis of a Singular Nutrient-plankton-fish model with taxation, protected zone and multiple delays. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 391-423. doi: 10.3934/naco.2020010

[18]

Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial and Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283

[19]

Nina Yan, Tingting Tong, Hongyan Dai. Capital-constrained supply chain with multiple decision attributes: Decision optimization and coordination analysis. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1831-1856. doi: 10.3934/jimo.2018125

[20]

Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]