May  2008, 2(2): 251-269. doi: 10.3934/ipi.2008.2.251

Localized potentials in electrical impedance tomography

1. 

Institut für Mathematik, Johannes Gutenberg-Universität Maint, 55099 Mainz, Germany

Received  January 2008 Revised  March 2008 Published  April 2008

In this work we study localized electric potentials that have an arbitrarily high energy on some given subset of a domain and low energy on another. We show that such potentials exist for general $L^\infty_+$-conductivities in almost arbitrarily shaped subregions of a domain, as long as these regions are connected to the boundary and a unique continuation principle is satisfied. From this we deduce a simple, but new, theoretical identifiability result for the famous Calderón problem with partial data. We also show how to construct such potentials numerically and use a connection with the factorization method to derive a new non-iterative algorithm for the detection of inclusions in electrical impedance tomography.
Citation: Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems and Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251
References:
[1]

H. Ammari, R. Griesmaier and M. Hanke, Identification of small inhomogeneities: asymptotic factorization, Math. Comp., 76 (2007), 1425-1448. doi: 10.1090/S0025-5718-07-01946-1.

[2]

T. Arens, Why linear sampling works, Inverse Problems, 20 (2004), 163-173. doi: 10.1088/0266-5611/20/1/010.

[3]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265.

[4]

M. Azzouz, M. Hanke, C. Oesterlein and K. Schilcher, The factorization method for electrical impedance tomography data from a new planar device, International Journal of Biomedical Imaging, vol. 2007, Article ID 83016, 7 pages, 2007.

[5]

N. Bourbaki, "Elements of Mathematics, Topological Vector Spaces, Chapters 1-5," Springer-Verlag, Berlin, 2003.

[6]

M. Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM J. Math. Anal., 32 (2001), 1327-1341. doi: 10.1137/S003614100036656X.

[7]

M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems, 16 (2000), 1029-1042. doi: 10.1088/0266-5611/16/4/310.

[8]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668. doi: 10.1081/PDE-120002868.

[9]

A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Application to Continuum Physics" (eds. W. H. Meyer and M. A. Raupp), Math. Soc., Rio de Janeiro, Brasil, (1980), 65-73.

[10]

A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), 133-138.

[11]

R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology - Volume 2: Functional and Variational Methods," Springer-Verlag, Berlin, 2000.

[12]

V. Druskin, On the uniqueness of inverse problems from incomplete boundary data, SIAM J. Appl. Math., 58 (1998), 1591-1603. doi: 10.1137/S0036139996298292.

[13]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," volume 375 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.

[14]

F. Frühauf, B. Gebauer and O. Scherzer, Detecting interfaces in a parabolic-elliptic problem from surface measurements, SIAM J. Numer. Anal., 45 (2007), 810-836. doi: 10.1137/050641545.

[15]

B. Gebauer, The factorization method for real elliptic problems, Z. Anal. Anwend., 25 (2006), 81-102. doi: 10.4171/ZAA/1279.

[16]

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems, 23 (2007), 2159-2170. doi: 10.1088/0266-5611/23/5/020.

[17]

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Inverse Problems, 19 (2003) S65-S90.

[18]

M. Hanke and B. Schappel, The factorization method for electrical impedance tomography in the half space, SIAM J. Appl. Math., 68 (2008), 907-924.

[19]

N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM J. Appl. Math., 64 (2004), 902-931. doi: 10.1137/S0036139903423303.

[20]

N. Hyvönen, H. Hakula and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Probl. Imaging, 1 (2007), 299-317.

[21]

V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877. doi: 10.1002/cpa.3160410702.

[22]

V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.

[23]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The calderón problem with partial data, Ann. of Math., 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567.

[24]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512. doi: 10.1088/0266-5611/14/6/009.

[25]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Math. Nachr., 278 (2005), 258-277. doi: 10.1002/mana.200310239.

[26]

A. Kirsch, An integral equation for maxwell's equations in a layered medium with an application to the factorization method, J. Integral Equations Appl., 19 (2007), 333-358. doi: 10.1216/jiea/1190905490.

[27]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302.

[28]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. interior results, Comm. Pure Appl. Math., 38 (1985), 643-667. doi: 10.1002/cpa.3160380513.

[29]

A. Lechleiter, N. Hyvönen and H. Hakula, The factorization method applied to the complete electrode model of impedance tomography, SIAM J. Appl. Math., 68 (2008), 1097-1121. doi: 10.1137/070683295.

[30]

C. Miranda, "Partial Differential Equations of Elliptic Type," Springer-Verlag, Berlin, 1970.

[31]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. doi: 10.2307/2118653.

[32]

W. Rudin, "Functional Analysis," 2nd ed., McGraw-Hill, New-York, 1991.

[33]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169. doi: 10.2307/1971291.

show all references

References:
[1]

H. Ammari, R. Griesmaier and M. Hanke, Identification of small inhomogeneities: asymptotic factorization, Math. Comp., 76 (2007), 1425-1448. doi: 10.1090/S0025-5718-07-01946-1.

[2]

T. Arens, Why linear sampling works, Inverse Problems, 20 (2004), 163-173. doi: 10.1088/0266-5611/20/1/010.

[3]

K. Astala and L. Päivärinta, Calderon's inverse conductivity problem in the plane, Ann. of Math., 163 (2006), 265-299. doi: 10.4007/annals.2006.163.265.

[4]

M. Azzouz, M. Hanke, C. Oesterlein and K. Schilcher, The factorization method for electrical impedance tomography data from a new planar device, International Journal of Biomedical Imaging, vol. 2007, Article ID 83016, 7 pages, 2007.

[5]

N. Bourbaki, "Elements of Mathematics, Topological Vector Spaces, Chapters 1-5," Springer-Verlag, Berlin, 2003.

[6]

M. Brühl, Explicit characterization of inclusions in electrical impedance tomography, SIAM J. Math. Anal., 32 (2001), 1327-1341. doi: 10.1137/S003614100036656X.

[7]

M. Brühl and M. Hanke, Numerical implementation of two noniterative methods for locating inclusions by impedance tomography, Inverse Problems, 16 (2000), 1029-1042. doi: 10.1088/0266-5611/16/4/310.

[8]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668. doi: 10.1081/PDE-120002868.

[9]

A. P. Calderón, On an inverse boundary value problem, in "Seminar on Numerical Analysis and its Application to Continuum Physics" (eds. W. H. Meyer and M. A. Raupp), Math. Soc., Rio de Janeiro, Brasil, (1980), 65-73.

[10]

A. P. Calderón, On an inverse boundary value problem, Comput. Appl. Math., 25 (2006), 133-138.

[11]

R. Dautray and J. L. Lions, "Mathematical Analysis and Numerical Methods for Science and Technology - Volume 2: Functional and Variational Methods," Springer-Verlag, Berlin, 2000.

[12]

V. Druskin, On the uniqueness of inverse problems from incomplete boundary data, SIAM J. Appl. Math., 58 (1998), 1591-1603. doi: 10.1137/S0036139996298292.

[13]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems," volume 375 of Mathematics and Its Applications, Kluwer Academic Publishers, Dordrecht/Boston/London, 2000.

[14]

F. Frühauf, B. Gebauer and O. Scherzer, Detecting interfaces in a parabolic-elliptic problem from surface measurements, SIAM J. Numer. Anal., 45 (2007), 810-836. doi: 10.1137/050641545.

[15]

B. Gebauer, The factorization method for real elliptic problems, Z. Anal. Anwend., 25 (2006), 81-102. doi: 10.4171/ZAA/1279.

[16]

B. Gebauer and N. Hyvönen, Factorization method and irregular inclusions in electrical impedance tomography, Inverse Problems, 23 (2007), 2159-2170. doi: 10.1088/0266-5611/23/5/020.

[17]

M. Hanke and M. Brühl, Recent progress in electrical impedance tomography, Inverse Problems, 19 (2003) S65-S90.

[18]

M. Hanke and B. Schappel, The factorization method for electrical impedance tomography in the half space, SIAM J. Appl. Math., 68 (2008), 907-924.

[19]

N. Hyvönen, Complete electrode model of electrical impedance tomography: Approximation properties and characterization of inclusions, SIAM J. Appl. Math., 64 (2004), 902-931. doi: 10.1137/S0036139903423303.

[20]

N. Hyvönen, H. Hakula and S. Pursiainen, Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography, Inverse Probl. Imaging, 1 (2007), 299-317.

[21]

V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877. doi: 10.1002/cpa.3160410702.

[22]

V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105.

[23]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The calderón problem with partial data, Ann. of Math., 165 (2007), 567-591. doi: 10.4007/annals.2007.165.567.

[24]

A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the far field operator, Inverse Problems, 14 (1998), 1489-1512. doi: 10.1088/0266-5611/14/6/009.

[25]

A. Kirsch, The factorization method for a class of inverse elliptic problems, Math. Nachr., 278 (2005), 258-277. doi: 10.1002/mana.200310239.

[26]

A. Kirsch, An integral equation for maxwell's equations in a layered medium with an application to the factorization method, J. Integral Equations Appl., 19 (2007), 333-358. doi: 10.1216/jiea/1190905490.

[27]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements, Comm. Pure Appl. Math., 37 (1984), 289-298. doi: 10.1002/cpa.3160370302.

[28]

R. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. interior results, Comm. Pure Appl. Math., 38 (1985), 643-667. doi: 10.1002/cpa.3160380513.

[29]

A. Lechleiter, N. Hyvönen and H. Hakula, The factorization method applied to the complete electrode model of impedance tomography, SIAM J. Appl. Math., 68 (2008), 1097-1121. doi: 10.1137/070683295.

[30]

C. Miranda, "Partial Differential Equations of Elliptic Type," Springer-Verlag, Berlin, 1970.

[31]

A. I. Nachman, Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., 143 (1996), 71-96. doi: 10.2307/2118653.

[32]

W. Rudin, "Functional Analysis," 2nd ed., McGraw-Hill, New-York, 1991.

[33]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., 125 (1987), 153-169. doi: 10.2307/1971291.

[1]

Nuutti Hyvönen, Harri Hakula, Sampsa Pursiainen. Numerical implementation of the factorization method within the complete electrode model of electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (2) : 299-317. doi: 10.3934/ipi.2007.1.299

[2]

Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems and Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051

[3]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems and Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[4]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems and Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[5]

Helmut Harbrecht, Thorsten Hohage. A Newton method for reconstructing non star-shaped domains in electrical impedance tomography. Inverse Problems and Imaging, 2009, 3 (2) : 353-371. doi: 10.3934/ipi.2009.3.353

[6]

Sarah Jane Hamilton, Andreas Hauptmann, Samuli Siltanen. A data-driven edge-preserving D-bar method for electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (4) : 1053-1072. doi: 10.3934/ipi.2014.8.1053

[7]

Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems and Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020

[8]

Yosra Boukari, Houssem Haddar. The factorization method applied to cracks with impedance boundary conditions. Inverse Problems and Imaging, 2013, 7 (4) : 1123-1138. doi: 10.3934/ipi.2013.7.1123

[9]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems and Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[10]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems and Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[11]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems and Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[12]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[13]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems and Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[14]

Erfang Ma. Integral formulation of the complete electrode model of electrical impedance tomography. Inverse Problems and Imaging, 2020, 14 (2) : 385-398. doi: 10.3934/ipi.2020017

[15]

Kimmo Karhunen, Aku Seppänen, Jari P. Kaipio. Adaptive meshing approach to identification of cracks with electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (1) : 127-148. doi: 10.3934/ipi.2014.8.127

[16]

Jérémi Dardé, Harri Hakula, Nuutti Hyvönen, Stratos Staboulis. Fine-tuning electrode information in electrical impedance tomography. Inverse Problems and Imaging, 2012, 6 (3) : 399-421. doi: 10.3934/ipi.2012.6.399

[17]

Haigang Li, Jenn-Nan Wang, Ling Wang. Refined stability estimates in electrical impedance tomography with multi-layer structure. Inverse Problems and Imaging, 2022, 16 (1) : 229-249. doi: 10.3934/ipi.2021048

[18]

Armin Lechleiter, Tobias Rienmüller. Factorization method for the inverse Stokes problem. Inverse Problems and Imaging, 2013, 7 (4) : 1271-1293. doi: 10.3934/ipi.2013.7.1271

[19]

Melody Dodd, Jennifer L. Mueller. A real-time D-bar algorithm for 2-D electrical impedance tomography data. Inverse Problems and Imaging, 2014, 8 (4) : 1013-1031. doi: 10.3934/ipi.2014.8.1013

[20]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems and Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (89)
  • HTML views (0)
  • Cited by (43)

Other articles
by authors

[Back to Top]