May  2008, 2(2): 301-315. doi: 10.3934/ipi.2008.2.301

Local stability for soft obstacles by a single measurement

1. 

RICAM, Altenbergerstrasse 69, A4040, Linz, Austria, Austria

Received  October 2007 Revised  March 2008 Published  April 2008

We consider an inverse scattering problem arising in target identification. We prove a local stability result of logarithmic type for the determination of a sound soft obstacle from the far field measurements associated to one single incident wave.
Citation: Eva Sincich, Mourad Sini. Local stability for soft obstacles by a single measurement. Inverse Problems & Imaging, 2008, 2 (2) : 301-315. doi: 10.3934/ipi.2008.2.301
References:
[1]

R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, New York, San Francisco, London, 1975.  Google Scholar

[2]

V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary, Comm. Pure Appl. Math, 50 (1997), 935-969. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.  Google Scholar

[3]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries," Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755-806.  Google Scholar

[4]

G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity, Comm. Partial Differential Equations, 26 (2001), 1787-1810. doi: 10.1081/PDE-100107459.  Google Scholar

[5]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685-1691. Corrigendum, preprint, 2006 (down-loadable at http://www.arxiv.org/archive/math/). arXiv:0601406 Google Scholar

[6]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, Siam J. Appl. Math., 58 (1998), 1060-1071. doi: 10.1137/S0036139996306468.  Google Scholar

[7]

I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude, Inverse Problems, 12 (1996), 859-867. doi: 10.1088/0266-5611/12/6/004.  Google Scholar

[8]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, [Inverse Problems, 19 (2003), 1361-1384; MR2036535], Inverse Problems, 21 (2005).  Google Scholar

[10]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[11]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Appl. Math. Sc. 93, Springer-Verlag, Berlin, 1992.  Google Scholar

[12]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259. doi: 10.1093/imamat/31.3.253.  Google Scholar

[13]

J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave, Inverse Problems, 22 (2006), 355-364. doi: 10.1088/0266-5611/22/1/019.  Google Scholar

[14]

P. R. Garabedian, "Partial Differential Equations," Second edition, Chelsea Publishing Co., New York, 1986.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[16]

D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205. doi: 10.1088/0266-5611/21/4/001.  Google Scholar

[17]

N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators, RICAM Preprint series, (2008). Google Scholar

[18]

V. Isakov, Stability estimates for obstacles in inverse scattering, J. Comp. Appl. Math., 42 (1991), 79-89. doi: 10.1016/0377-0427(92)90164-S.  Google Scholar

[19]

V. Isakov, New stability results for soft obstacles in inverse scattering, Inverse Problems, 9 (1993), 535-543. doi: 10.1088/0266-5611/9/5/003.  Google Scholar

[20]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Func. Anal, 130 (1995), 161-219. doi: 10.1006/jfan.1995.1067.  Google Scholar

[21]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524. doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[22]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480. doi: 10.1088/0266-5611/20/2/010.  Google Scholar

[23]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,, to appear on Indiana Univ. Math. J., ().   Google Scholar

[24]

A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering," Springer, 2004. Google Scholar

[25]

E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math. Anal., 38 (2006), 434-451 (electronic). doi: 10.1137/050631513.  Google Scholar

[26]

E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements," Ph.D. thesis, S.I.S.S.A./I.S.A.S., Trieste, Italy, 2005; available on line at http://www.sissa.it/library/. Google Scholar

[27]

P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc., 132 (2004), 1351-1354. doi: 10.1090/S0002-9939-03-07363-5.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65, Academic Press, New York, San Francisco, London, 1975.  Google Scholar

[2]

V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary, Comm. Pure Appl. Math, 50 (1997), 935-969. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.  Google Scholar

[3]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries," Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755-806.  Google Scholar

[4]

G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity, Comm. Partial Differential Equations, 26 (2001), 1787-1810. doi: 10.1081/PDE-100107459.  Google Scholar

[5]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement, Proc. Amer. Math. Soc., 133 (2005), 1685-1691. Corrigendum, preprint, 2006 (down-loadable at http://www.arxiv.org/archive/math/). arXiv:0601406 Google Scholar

[6]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, Siam J. Appl. Math., 58 (1998), 1060-1071. doi: 10.1137/S0036139996306468.  Google Scholar

[7]

I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude, Inverse Problems, 12 (1996), 859-867. doi: 10.1088/0266-5611/12/6/004.  Google Scholar

[8]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory," Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.  Google Scholar

[9]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves, [Inverse Problems, 19 (2003), 1361-1384; MR2036535], Inverse Problems, 21 (2005).  Google Scholar

[10]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory," Pure and Applied Mathematics (New York), A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1983.  Google Scholar

[11]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," Appl. Math. Sc. 93, Springer-Verlag, Berlin, 1992.  Google Scholar

[12]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering, IMA J. Appl. Math., 31 (1983), 253-259. doi: 10.1093/imamat/31.3.253.  Google Scholar

[13]

J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave, Inverse Problems, 22 (2006), 355-364. doi: 10.1088/0266-5611/22/1/019.  Google Scholar

[14]

P. R. Garabedian, "Partial Differential Equations," Second edition, Chelsea Publishing Co., New York, 1986.  Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977.  Google Scholar

[16]

D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality, Inverse Problems, 21 (2005), 1195-1205. doi: 10.1088/0266-5611/21/4/001.  Google Scholar

[17]

N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators, RICAM Preprint series, (2008). Google Scholar

[18]

V. Isakov, Stability estimates for obstacles in inverse scattering, J. Comp. Appl. Math., 42 (1991), 79-89. doi: 10.1016/0377-0427(92)90164-S.  Google Scholar

[19]

V. Isakov, New stability results for soft obstacles in inverse scattering, Inverse Problems, 9 (1993), 535-543. doi: 10.1088/0266-5611/9/5/003.  Google Scholar

[20]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Func. Anal, 130 (1995), 161-219. doi: 10.1006/jfan.1995.1067.  Google Scholar

[21]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers, Inverse Problems, 22 (2006), 515-524. doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[22]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies, Inverse Problems, 20 (2004), 453-480. doi: 10.1088/0266-5611/20/2/010.  Google Scholar

[23]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,, to appear on Indiana Univ. Math. J., ().   Google Scholar

[24]

A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering," Springer, 2004. Google Scholar

[25]

E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements, SIAM J. Math. Anal., 38 (2006), 434-451 (electronic). doi: 10.1137/050631513.  Google Scholar

[26]

E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements," Ph.D. thesis, S.I.S.S.A./I.S.A.S., Trieste, Italy, 2005; available on line at http://www.sissa.it/library/. Google Scholar

[27]

P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering, Proc. Amer. Math. Soc., 132 (2004), 1351-1354. doi: 10.1090/S0002-9939-03-07363-5.  Google Scholar

[1]

Pedro Serranho. A hybrid method for inverse scattering for Sound-soft obstacles in R3. Inverse Problems & Imaging, 2007, 1 (4) : 691-712. doi: 10.3934/ipi.2007.1.691

[2]

Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems & Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551

[3]

Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems & Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793

[4]

Peijun Li, Ganghua Yuan. Increasing stability for the inverse source scattering problem with multi-frequencies. Inverse Problems & Imaging, 2017, 11 (4) : 745-759. doi: 10.3934/ipi.2017035

[5]

Siamak RabieniaHaratbar. Inverse scattering and stability for the biharmonic operator. Inverse Problems & Imaging, 2021, 15 (2) : 271-283. doi: 10.3934/ipi.2020064

[6]

Guanghui Hu, Andrea Mantile, Mourad Sini, Tao Yin. Direct and inverse time-harmonic elastic scattering from point-like and extended obstacles. Inverse Problems & Imaging, 2020, 14 (6) : 1025-1056. doi: 10.3934/ipi.2020054

[7]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[8]

Rodica Toader. Scattering in domains with many small obstacles. Discrete & Continuous Dynamical Systems, 1998, 4 (2) : 321-338. doi: 10.3934/dcds.1998.4.321

[9]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems & Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[10]

Ming Li, Ruming Zhang. Near-field imaging of sound-soft obstacles in periodic waveguides. Inverse Problems & Imaging, 2017, 11 (6) : 1091-1105. doi: 10.3934/ipi.2017050

[11]

Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems & Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211

[12]

Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems & Imaging, 2015, 9 (4) : 951-970. doi: 10.3934/ipi.2015.9.951

[13]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[14]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[15]

John C. Schotland, Vadim A. Markel. Fourier-Laplace structure of the inverse scattering problem for the radiative transport equation. Inverse Problems & Imaging, 2007, 1 (1) : 181-188. doi: 10.3934/ipi.2007.1.181

[16]

Weishi Yin, Jiawei Ge, Pinchao Meng, Fuheng Qu. A neural network method for the inverse scattering problem of impenetrable cavities. Electronic Research Archive, 2020, 28 (2) : 1123-1142. doi: 10.3934/era.2020062

[17]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, 2021, 15 (3) : 539-554. doi: 10.3934/ipi.2021004

[18]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[19]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems & Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[20]

Yi-Hsuan Lin. Reconstruction of penetrable obstacles in the anisotropic acoustic scattering. Inverse Problems & Imaging, 2016, 10 (3) : 765-780. doi: 10.3934/ipi.2016020

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (51)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]