May  2008, 2(2): 301-315. doi: 10.3934/ipi.2008.2.301

Local stability for soft obstacles by a single measurement

1. 

RICAM, Altenbergerstrasse 69, A4040, Linz, Austria, Austria

Received  October 2007 Revised  March 2008 Published  April 2008

We consider an inverse scattering problem arising in target identification. We prove a local stability result of logarithmic type for the determination of a sound soft obstacle from the far field measurements associated to one single incident wave.
Citation: Eva Sincich, Mourad Sini. Local stability for soft obstacles by a single measurement. Inverse Problems & Imaging, 2008, 2 (2) : 301-315. doi: 10.3934/ipi.2008.2.301
References:
[1]

R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65,, Academic Press, (1975).   Google Scholar

[2]

V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary,, Comm. Pure Appl. Math, 50 (1997), 935.  doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.  Google Scholar

[3]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries,", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.   Google Scholar

[4]

G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity,, Comm. Partial Differential Equations, 26 (2001), 1787.  doi: 10.1081/PDE-100107459.  Google Scholar

[5]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proc. Amer. Math. Soc., 133 (2005), 1685.   Google Scholar

[6]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object,, Siam J. Appl. Math., 58 (1998), 1060.  doi: 10.1137/S0036139996306468.  Google Scholar

[7]

I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859.  doi: 10.1088/0266-5611/12/6/004.  Google Scholar

[8]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory,", Interaction of Mechanics and Mathematics, (2006).   Google Scholar

[9]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves,, [Inverse Problems, 19 (2003), 1361.   Google Scholar

[10]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics (New York), (1983).   Google Scholar

[11]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Appl. Math. Sc. 93, (1992).   Google Scholar

[12]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253.  doi: 10.1093/imamat/31.3.253.  Google Scholar

[13]

J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave,, Inverse Problems, 22 (2006), 355.  doi: 10.1088/0266-5611/22/1/019.  Google Scholar

[14]

P. R. Garabedian, "Partial Differential Equations,", Second edition, (1986).   Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).   Google Scholar

[16]

D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality,, Inverse Problems, 21 (2005), 1195.  doi: 10.1088/0266-5611/21/4/001.  Google Scholar

[17]

N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators,, RICAM Preprint series, (2008).   Google Scholar

[18]

V. Isakov, Stability estimates for obstacles in inverse scattering,, J. Comp. Appl. Math., 42 (1991), 79.  doi: 10.1016/0377-0427(92)90164-S.  Google Scholar

[19]

V. Isakov, New stability results for soft obstacles in inverse scattering,, Inverse Problems, 9 (1993), 535.  doi: 10.1088/0266-5611/9/5/003.  Google Scholar

[20]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Func. Anal, 130 (1995), 161.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[21]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers,, Inverse Problems, 22 (2006), 515.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[22]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453.  doi: 10.1088/0266-5611/20/2/010.  Google Scholar

[23]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,, to appear on Indiana Univ. Math. J., ().   Google Scholar

[24]

A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering,", Springer, (2004).   Google Scholar

[25]

E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434.  doi: 10.1137/050631513.  Google Scholar

[26]

E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements,", Ph.D. thesis, (2005).   Google Scholar

[27]

P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering,, Proc. Amer. Math. Soc., 132 (2004), 1351.  doi: 10.1090/S0002-9939-03-07363-5.  Google Scholar

show all references

References:
[1]

R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65,, Academic Press, (1975).   Google Scholar

[2]

V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary,, Comm. Pure Appl. Math, 50 (1997), 935.  doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H.  Google Scholar

[3]

G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries,", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.   Google Scholar

[4]

G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity,, Comm. Partial Differential Equations, 26 (2001), 1787.  doi: 10.1081/PDE-100107459.  Google Scholar

[5]

G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proc. Amer. Math. Soc., 133 (2005), 1685.   Google Scholar

[6]

G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object,, Siam J. Appl. Math., 58 (1998), 1060.  doi: 10.1137/S0036139996306468.  Google Scholar

[7]

I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859.  doi: 10.1088/0266-5611/12/6/004.  Google Scholar

[8]

F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory,", Interaction of Mechanics and Mathematics, (2006).   Google Scholar

[9]

J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves,, [Inverse Problems, 19 (2003), 1361.   Google Scholar

[10]

D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics (New York), (1983).   Google Scholar

[11]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Appl. Math. Sc. 93, (1992).   Google Scholar

[12]

D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253.  doi: 10.1093/imamat/31.3.253.  Google Scholar

[13]

J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave,, Inverse Problems, 22 (2006), 355.  doi: 10.1088/0266-5611/22/1/019.  Google Scholar

[14]

P. R. Garabedian, "Partial Differential Equations,", Second edition, (1986).   Google Scholar

[15]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).   Google Scholar

[16]

D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality,, Inverse Problems, 21 (2005), 1195.  doi: 10.1088/0266-5611/21/4/001.  Google Scholar

[17]

N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators,, RICAM Preprint series, (2008).   Google Scholar

[18]

V. Isakov, Stability estimates for obstacles in inverse scattering,, J. Comp. Appl. Math., 42 (1991), 79.  doi: 10.1016/0377-0427(92)90164-S.  Google Scholar

[19]

V. Isakov, New stability results for soft obstacles in inverse scattering,, Inverse Problems, 9 (1993), 535.  doi: 10.1088/0266-5611/9/5/003.  Google Scholar

[20]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Func. Anal, 130 (1995), 161.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[21]

H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers,, Inverse Problems, 22 (2006), 515.  doi: 10.1088/0266-5611/22/2/008.  Google Scholar

[22]

A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453.  doi: 10.1088/0266-5611/20/2/010.  Google Scholar

[23]

L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,, to appear on Indiana Univ. Math. J., ().   Google Scholar

[24]

A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering,", Springer, (2004).   Google Scholar

[25]

E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434.  doi: 10.1137/050631513.  Google Scholar

[26]

E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements,", Ph.D. thesis, (2005).   Google Scholar

[27]

P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering,, Proc. Amer. Math. Soc., 132 (2004), 1351.  doi: 10.1090/S0002-9939-03-07363-5.  Google Scholar

[1]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[2]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[3]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[4]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[7]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[8]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[9]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[10]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[11]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351

[12]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[13]

Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227

[14]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[15]

Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020050

[16]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[17]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[18]

Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021015

[19]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[20]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]