- Previous Article
- IPI Home
- This Issue
-
Next Article
On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization
Local stability for soft obstacles by a single measurement
1. | RICAM, Altenbergerstrasse 69, A4040, Linz, Austria, Austria |
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65,, Academic Press, (1975).
|
[2] |
V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary,, Comm. Pure Appl. Math, 50 (1997), 935.
doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H. |
[3] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries,", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.
|
[4] |
G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity,, Comm. Partial Differential Equations, 26 (2001), 1787.
doi: 10.1081/PDE-100107459. |
[5] |
G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proc. Amer. Math. Soc., 133 (2005), 1685. Google Scholar |
[6] |
G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object,, Siam J. Appl. Math., 58 (1998), 1060.
doi: 10.1137/S0036139996306468. |
[7] |
I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859.
doi: 10.1088/0266-5611/12/6/004. |
[8] |
F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory,", Interaction of Mechanics and Mathematics, (2006).
|
[9] |
J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves,, [Inverse Problems, 19 (2003), 1361.
|
[10] |
D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics (New York), (1983).
|
[11] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Appl. Math. Sc. 93, (1992).
|
[12] |
D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253.
doi: 10.1093/imamat/31.3.253. |
[13] |
J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave,, Inverse Problems, 22 (2006), 355.
doi: 10.1088/0266-5611/22/1/019. |
[14] |
P. R. Garabedian, "Partial Differential Equations,", Second edition, (1986).
|
[15] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).
|
[16] |
D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality,, Inverse Problems, 21 (2005), 1195.
doi: 10.1088/0266-5611/21/4/001. |
[17] |
N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators,, RICAM Preprint series, (2008). Google Scholar |
[18] |
V. Isakov, Stability estimates for obstacles in inverse scattering,, J. Comp. Appl. Math., 42 (1991), 79.
doi: 10.1016/0377-0427(92)90164-S. |
[19] |
V. Isakov, New stability results for soft obstacles in inverse scattering,, Inverse Problems, 9 (1993), 535.
doi: 10.1088/0266-5611/9/5/003. |
[20] |
D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Func. Anal, 130 (1995), 161.
doi: 10.1006/jfan.1995.1067. |
[21] |
H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers,, Inverse Problems, 22 (2006), 515.
doi: 10.1088/0266-5611/22/2/008. |
[22] |
A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453.
doi: 10.1088/0266-5611/20/2/010. |
[23] |
L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,, to appear on Indiana Univ. Math. J., (). Google Scholar |
[24] |
A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering,", Springer, (2004). Google Scholar |
[25] |
E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434.
doi: 10.1137/050631513. |
[26] |
E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements,", Ph.D. thesis, (2005). Google Scholar |
[27] |
P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering,, Proc. Amer. Math. Soc., 132 (2004), 1351.
doi: 10.1090/S0002-9939-03-07363-5. |
show all references
References:
[1] |
R. A. Adams, "Sobolev Spaces," Pure and Applied Mathematics, Vol. 65,, Academic Press, (1975).
|
[2] |
V. Adolfsson and L. Escauriaza, $C^{1,\a}$ domains and unique continuation at the boundary,, Comm. Pure Appl. Math, 50 (1997), 935.
doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H. |
[3] |
G. Alessandrini, E. Beretta, E. Rosset and S. Vessella, "Optimal Stability for Inverse Elliptic Boundary Value Problems with Unknown Boundaries,", Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 755.
|
[4] |
G. Alessandrini and A. Morassi, Strong unique continuation for the Lamè system of elasticity,, Comm. Partial Differential Equations, 26 (2001), 1787.
doi: 10.1081/PDE-100107459. |
[5] |
G. Alessandrini and L. Rondi, Determining a sound-soft polyhedral scatterer by a single far-field measurement,, Proc. Amer. Math. Soc., 133 (2005), 1685. Google Scholar |
[6] |
G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object,, Siam J. Appl. Math., 58 (1998), 1060.
doi: 10.1137/S0036139996306468. |
[7] |
I. Bushuyev, Stability of recovering the near-field wave from the scattering amplitude,, Inverse Problems, 12 (1996), 859.
doi: 10.1088/0266-5611/12/6/004. |
[8] |
F. Cakoni and D. Colton, "Qualitative Methods in Inverse Scattering Theory,", Interaction of Mechanics and Mathematics, (2006).
|
[9] |
J. Cheng and M. Yamamoto, Uniqueness in an inverse scattering problem within non-trapping polygonal obstacles with at most two incoming waves,, [Inverse Problems, 19 (2003), 1361.
|
[10] |
D. Colton and R. Kress, "Integral Equation Methods in Scattering Theory,", Pure and Applied Mathematics (New York), (1983).
|
[11] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", Appl. Math. Sc. 93, (1992).
|
[12] |
D. Colton and B. D. Sleeman, Uniqueness theorems for the inverse problem of acoustic scattering,, IMA J. Appl. Math., 31 (1983), 253.
doi: 10.1093/imamat/31.3.253. |
[13] |
J. Elschner and M. Yamamoto, Uniqueness in determining polygonal sound-hard obstacles with a single incoming wave,, Inverse Problems, 22 (2006), 355.
doi: 10.1088/0266-5611/22/1/019. |
[14] |
P. R. Garabedian, "Partial Differential Equations,", Second edition, (1986).
|
[15] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Grundlehren der Mathematischen Wissenschaften, 224 (1977).
|
[16] |
D. Gintides, Local uniqueness for the inverse scattering problem in acoustics via the Faber-Krahn inequality,, Inverse Problems, 21 (2005), 1195.
doi: 10.1088/0266-5611/21/4/001. |
[17] |
N. Honda, G. Nakamura and M. Sini, Analytic extention and reconstruction of obstacles from few measurements for elliptic second order operators,, RICAM Preprint series, (2008). Google Scholar |
[18] |
V. Isakov, Stability estimates for obstacles in inverse scattering,, J. Comp. Appl. Math., 42 (1991), 79.
doi: 10.1016/0377-0427(92)90164-S. |
[19] |
V. Isakov, New stability results for soft obstacles in inverse scattering,, Inverse Problems, 9 (1993), 535.
doi: 10.1088/0266-5611/9/5/003. |
[20] |
D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Func. Anal, 130 (1995), 161.
doi: 10.1006/jfan.1995.1067. |
[21] |
H. Liu and J. Zou, Uniqueness in an inverse acoustic obstacle scattering problem for both sound-hard and sound-soft polyhedral scatterers,, Inverse Problems, 22 (2006), 515.
doi: 10.1088/0266-5611/22/2/008. |
[22] |
A. Morassi and E. Rosset, Stable determination of cavities in elastic bodies,, Inverse Problems, 20 (2004), 453.
doi: 10.1088/0266-5611/20/2/010. |
[23] |
L. Rondi, Stable determination of sound-soft polyhedral scatterers by a single measurement,, to appear on Indiana Univ. Math. J., (). Google Scholar |
[24] |
A. G. Ramm, "Inverse Problems, Mathematical and Analytical Techniques with Applications to Engineering,", Springer, (2004). Google Scholar |
[25] |
E. Sincich, Stable determination of the surface impedance of an obstacle by far field measurements,, SIAM J. Math. Anal., 38 (2006), 434.
doi: 10.1137/050631513. |
[26] |
E. Sincich, "Stability and Reconstruction for the Determination of Boundary Terms by a Single Measurements,", Ph.D. thesis, (2005). Google Scholar |
[27] |
P. Stefanov and G. Uhlmann, Local uniqueness for the fixed energy fixed angle inverse problem in obstacle scattering,, Proc. Amer. Math. Soc., 132 (2004), 1351.
doi: 10.1090/S0002-9939-03-07363-5. |
[1] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
[2] |
Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021006 |
[3] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075 |
[4] |
Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090 |
[5] |
Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108 |
[6] |
Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258 |
[7] |
Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002 |
[8] |
Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367 |
[9] |
Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2021017 |
[10] |
Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021005 |
[11] |
Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 61-79. doi: 10.3934/dcdsb.2020351 |
[12] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[13] |
Tomáš Smejkal, Jiří Mikyška, Jaromír Kukal. Comparison of modern heuristics on solving the phase stability testing problem. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1161-1180. doi: 10.3934/dcdss.2020227 |
[14] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[15] |
Ali Wehbe, Rayan Nasser, Nahla Noun. Stability of N-D transmission problem in viscoelasticity with localized Kelvin-Voigt damping under different types of geometric conditions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020050 |
[16] |
Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266 |
[17] |
Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380 |
[18] |
Skyler Simmons. Stability of broucke's isosceles orbit. Discrete & Continuous Dynamical Systems - A, 2021 doi: 10.3934/dcds.2021015 |
[19] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[20] |
Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]