• Previous Article
    Identifiability and reconstruction of shapes from integral invariants
  • IPI Home
  • This Issue
  • Next Article
    An alternating boundary integral based method for a Cauchy problem for the Laplace equation in semi-infinite regions
August  2008, 2(3): 335-340. doi: 10.3934/ipi.2008.2.335

Resonances and balls in obstacle scattering with Neumann boundary conditions

1. 

Department of Mathematics, University of Missouri, Columbia, Missouri 65211, United States

Received  January 2008 Revised  June 2008 Published  July 2008

We consider scattering by a smooth obstacle in $R^d$, $d\geq 3 $ odd. We show that for the Neumann Laplacian if an obstacle has the same resonances as the ball of radius $\rho$ does, then the obstacle is a ball of radius $\rho$. We give related results for obstacles which are disjoint unions of several balls of the same radius.
Citation: T. J. Christiansen. Resonances and balls in obstacle scattering with Neumann boundary conditions. Inverse Problems & Imaging, 2008, 2 (3) : 335-340. doi: 10.3934/ipi.2008.2.335
References:
[1]

A. D. Alexandrov, To the theory of mixed volumes of convex bodies part II,, Mat. Sbornik, 2 (1937), 1205.   Google Scholar

[2]

A. D. Alexandrov, "Selected Works. Part I. Selected Scientific Papers,'', Classics of Soviet Mathematics, (1996).   Google Scholar

[3]

C. Bardos, J.-C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion,, Comm. Partial Differential Equations, 7 (1982), 905.  doi: 10.1080/03605308208820241.  Google Scholar

[4]

T. Branson and P. Gilkey, The asymptotics of the Laplacian on a manifold with boundary,, Comm. Partial Differential Equations, 15 (1990), 245.  doi: 10.1080/03605309908820686.  Google Scholar

[5]

T. Christiansen, Spectral asymptotics for compactly supported perturbations of the Laplacian on Rn,, Comm. Partial Differential Equations, 23 (1998), 933.  doi: 10.1080/03605309808821373.  Google Scholar

[6]

V. Guillemin and R. B. Melrose, The Poisson summation formula for manifolds with boundary,, Adv. in Math., 32 (1979), 204.  doi: 10.1016/0001-8708(79)90042-2.  Google Scholar

[7]

A. Hassell and M. Zworski, Resonant rigidity of s2,, J. Funct. Anal., 169 (1999), 604.  doi: 10.1006/jfan.1999.3487.  Google Scholar

[8]

R. B. Melrose, Scattering theory and the trace of the wave group,, J. Funct. Anal., 45 (1982), 29.  doi: 10.1016/0022-1236(82)90003-9.  Google Scholar

[9]

R. B. Melrose, Polynomial bound on the number of scattering poles,, J. Funct. Anal., 53 (1983), 287.  doi: 10.1016/0022-1236(83)90036-8.  Google Scholar

[10]

R. B. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle,, Journées Équations aux Dérivées partielles (1984), (1984), 1.   Google Scholar

[11]

R. B. Melrose, "Geometric Scattering Theory,'' Stanford Lectures., Cambridge University Press, (1995).   Google Scholar

[12]

V. Petkov and L. Stoyanov, "Geometry of Reflecting Rays and Inverse Spectral Problems,'', Pure and Applied Mathematics (New York). John Wiley & Sons, ().   Google Scholar

[13]

V. Petkov and M. Zworski, Semi-classical estimates on the scattering determinant,, Ann. Henri Poincaré, 2 (2001), 675.  doi: 10.1007/PL00001049.  Google Scholar

[14]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. IV. Analysis of Operators,'', Academic Press [Harcourt Brace Jovanovich, (1978).   Google Scholar

[15]

D. Robert, On the Weyl formula for obstacles,, in, (1995), 264.   Google Scholar

[16]

J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles,, J. Amer. Math. Soc., 4 (1991), 729.   Google Scholar

[17]

J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, II,, J. Funct. Anal., 123 (1994), 336.  doi: 10.1006/jfan.1994.1092.  Google Scholar

[18]

M. E. Taylor, "Partial Differential Equations. II. Qualitative Studies of Linear Equations,'', Applied Mathematical Sciences, (1996).   Google Scholar

[19]

M. Zworski, Poisson formulae for resonances,, Séminaire sur les Équations aux Dérivées Partielles, (1997), 1996.   Google Scholar

[20]

M. Zworski, Poisson formula for resonances in even dimensions,, Asian J. Math., 2 (1998), 609.   Google Scholar

show all references

References:
[1]

A. D. Alexandrov, To the theory of mixed volumes of convex bodies part II,, Mat. Sbornik, 2 (1937), 1205.   Google Scholar

[2]

A. D. Alexandrov, "Selected Works. Part I. Selected Scientific Papers,'', Classics of Soviet Mathematics, (1996).   Google Scholar

[3]

C. Bardos, J.-C. Guillot and J. Ralston, La relation de Poisson pour l'équation des ondes dans un ouvert non borné. Application à la théorie de la diffusion,, Comm. Partial Differential Equations, 7 (1982), 905.  doi: 10.1080/03605308208820241.  Google Scholar

[4]

T. Branson and P. Gilkey, The asymptotics of the Laplacian on a manifold with boundary,, Comm. Partial Differential Equations, 15 (1990), 245.  doi: 10.1080/03605309908820686.  Google Scholar

[5]

T. Christiansen, Spectral asymptotics for compactly supported perturbations of the Laplacian on Rn,, Comm. Partial Differential Equations, 23 (1998), 933.  doi: 10.1080/03605309808821373.  Google Scholar

[6]

V. Guillemin and R. B. Melrose, The Poisson summation formula for manifolds with boundary,, Adv. in Math., 32 (1979), 204.  doi: 10.1016/0001-8708(79)90042-2.  Google Scholar

[7]

A. Hassell and M. Zworski, Resonant rigidity of s2,, J. Funct. Anal., 169 (1999), 604.  doi: 10.1006/jfan.1999.3487.  Google Scholar

[8]

R. B. Melrose, Scattering theory and the trace of the wave group,, J. Funct. Anal., 45 (1982), 29.  doi: 10.1016/0022-1236(82)90003-9.  Google Scholar

[9]

R. B. Melrose, Polynomial bound on the number of scattering poles,, J. Funct. Anal., 53 (1983), 287.  doi: 10.1016/0022-1236(83)90036-8.  Google Scholar

[10]

R. B. Melrose, Polynomial bound on the distribution of poles in scattering by an obstacle,, Journées Équations aux Dérivées partielles (1984), (1984), 1.   Google Scholar

[11]

R. B. Melrose, "Geometric Scattering Theory,'' Stanford Lectures., Cambridge University Press, (1995).   Google Scholar

[12]

V. Petkov and L. Stoyanov, "Geometry of Reflecting Rays and Inverse Spectral Problems,'', Pure and Applied Mathematics (New York). John Wiley & Sons, ().   Google Scholar

[13]

V. Petkov and M. Zworski, Semi-classical estimates on the scattering determinant,, Ann. Henri Poincaré, 2 (2001), 675.  doi: 10.1007/PL00001049.  Google Scholar

[14]

M. Reed and B. Simon, "Methods of Modern Mathematical Physics. IV. Analysis of Operators,'', Academic Press [Harcourt Brace Jovanovich, (1978).   Google Scholar

[15]

D. Robert, On the Weyl formula for obstacles,, in, (1995), 264.   Google Scholar

[16]

J. Sjöstrand and M. Zworski, Complex scaling and the distribution of scattering poles,, J. Amer. Math. Soc., 4 (1991), 729.   Google Scholar

[17]

J. Sjöstrand and M. Zworski, Lower bounds on the number of scattering poles, II,, J. Funct. Anal., 123 (1994), 336.  doi: 10.1006/jfan.1994.1092.  Google Scholar

[18]

M. E. Taylor, "Partial Differential Equations. II. Qualitative Studies of Linear Equations,'', Applied Mathematical Sciences, (1996).   Google Scholar

[19]

M. Zworski, Poisson formulae for resonances,, Séminaire sur les Équations aux Dérivées Partielles, (1997), 1996.   Google Scholar

[20]

M. Zworski, Poisson formula for resonances in even dimensions,, Asian J. Math., 2 (1998), 609.   Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[5]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[6]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[7]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[8]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[9]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[10]

Lekbir Afraites, Chorouk Masnaoui, Mourad Nachaoui. Shape optimization method for an inverse geometric source problem and stability at critical shape. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021006

[11]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[12]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[13]

Noriyoshi Fukaya. Uniqueness and nondegeneracy of ground states for nonlinear Schrödinger equations with attractive inverse-power potential. Communications on Pure & Applied Analysis, 2021, 20 (1) : 121-143. doi: 10.3934/cpaa.2020260

[14]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[15]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[16]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[17]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[18]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[19]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[20]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]