Citation: |
[1] |
R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229.doi: 10.1088/0266-5611/10/6/003. |
[2] |
R. A. Adams, "Sobolev Spaces,'' Academic Press, New York, 1975. |
[3] |
G. Alessandrini, Open issues of stability for the inverse conductivity problem, J. Inverse Ill-Posed Probl., 15 (2007), 451-460.doi: 10.1515/jiip.2007.025. |
[4] |
G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.doi: 10.1137/S003614100444191X. |
[5] |
L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'' Clarendon Press, Oxford, 2000. |
[6] |
K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265. |
[7] |
K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224.doi: 10.1081/PDE-200044485. |
[8] |
H. Attouch, "Variational Convergence for Functions and Operators,'' Pitman Publishing, Boston London Melbourne, 1984. |
[9] |
A. Braides, "$\Gamma$-convergence for Beginners,'' Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198507840.001.0001. |
[10] |
T. F. Chan and X.-C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys., 193 (2004), 40-66.doi: 10.1016/j.jcp.2003.08.003. |
[11] |
G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation, ESAIM Control Optim. Calc. Var., 2 (1997), 359-376.doi: 10.1051/cocv:1997113. |
[12] |
E. T. Chung, T. F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phys., 205 (2005), 357-372.doi: 10.1016/j.jcp.2004.11.022. |
[13] |
G. Dal Maso, "An Introduction to $\Gamma$-convergence,'' Birkhäuser, Boston Basel Berlin, 1993. |
[14] |
M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems, Inverse Problems, 19 (2003), 685-701.doi: 10.1088/0266-5611/19/3/313. |
[15] |
D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Problems, 10 (1994), 317-334.doi: 10.1088/0266-5611/10/2/008. |
[16] |
H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'' Kluwer Academic Publishers, Dordrecht Boston London, 1996. |
[17] |
T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations, Rend. Mat. Appl. (7), 19 (1999), 471-488. |
[18] |
V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877.doi: 10.1002/cpa.3160410702. |
[19] |
R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math., 38 (1985), 643-667.doi: 10.1002/cpa.3160380513. |
[20] |
A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: a numerical study, Inverse Problems, 22 (2006), 1967-1987.doi: 10.1088/0266-5611/22/6/004. |
[21] |
N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189-206. |
[22] |
D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685.doi: 10.1002/cpa.3160420503. |
[23] |
L. Rondi, A variational approach to the reconstruction of cracks by boundary measurements, J. Math. Pures Appl. (9), 87 (2007), 324-342.doi: 10.1016/j.matpur.2007.01.007. |
[24] |
L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional, ESAIM Control Optim. Calc. Var., 6 (2001), 517-538.doi: 10.1051/cocv:2001121. |
[25] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.doi: 10.1137/0152060. |
[26] |
J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201-232.doi: 10.1002/cpa.3160430203. |
[27] |
V. V. Vasin, Some tendencies in the Tikhonov regularization of ill-posed problems, J. Inverse Ill-Posed Probl., 14 (2006), 813-840.doi: 10.1515/156939406779768328. |
[28] |
V. V. Vasin, Some approaches to reconstruction of nonsmooth solutions of linear ill-posed problems, J. Inverse Ill-Posed Probl., 15 (2007), 625-640.doi: 10.1515/jiip.2007.035. |