\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

On the regularization of the inverse conductivity problem with discontinuous conductivities

Abstract Related Papers Cited by
  • We consider the regularization of the inverse conductivity problem with discontinuous conductivities, like for example the so-called inclusion problem. We theoretically validate the use of some of the most widely adopted regularization operators, like for instance total variation and the Mumford-Shah functional, by proving a convergence result for the solutions to the regularized minimum problems.
    Mathematics Subject Classification: Primary: 35R30; Secondary: 47J06, 49J45.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    R. Acar and C. R. Vogel, Analysis of bounded variation penalty methods for ill-posed problems, Inverse Problems, 10 (1994), 1217-1229.doi: 10.1088/0266-5611/10/6/003.

    [2]

    R. A. Adams, "Sobolev Spaces,'' Academic Press, New York, 1975.

    [3]

    G. Alessandrini, Open issues of stability for the inverse conductivity problem, J. Inverse Ill-Posed Probl., 15 (2007), 451-460.doi: 10.1515/jiip.2007.025.

    [4]

    G. Alessandrini and M. Di Cristo, Stable determination of an inclusion by boundary measurements, SIAM J. Math. Anal., 37 (2005), 200-217.doi: 10.1137/S003614100444191X.

    [5]

    L. Ambrosio, N. Fusco and D. Pallara, "Functions of Bounded Variation and Free Discontinuity Problems,'' Clarendon Press, Oxford, 2000.

    [6]

    K. Astala and L. Päivärinta, Calderón's inverse conductivity problem in the plane, Ann. of Math. (2), 163 (2006), 265-299.doi: 10.4007/annals.2006.163.265.

    [7]

    K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane, Comm. Partial Differential Equations, 30 (2005), 207-224.doi: 10.1081/PDE-200044485.

    [8]

    H. Attouch, "Variational Convergence for Functions and Operators,'' Pitman Publishing, Boston London Melbourne, 1984.

    [9]

    A. Braides, "$\Gamma$-convergence for Beginners,'' Oxford University Press, Oxford, 2002.doi: 10.1093/acprof:oso/9780198507840.001.0001.

    [10]

    T. F. Chan and X.-C. Tai, Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients, J. Comput. Phys., 193 (2004), 40-66.doi: 10.1016/j.jcp.2003.08.003.

    [11]

    G. Chavent and K. Kunisch, Regularization of linear least squares problems by total bounded variation, ESAIM Control Optim. Calc. Var., 2 (1997), 359-376.doi: 10.1051/cocv:1997113.

    [12]

    E. T. Chung, T. F. Chan and X.-C. Tai, Electrical impedance tomography using level set representation and total variational regularization, J. Comput. Phys., 205 (2005), 357-372.doi: 10.1016/j.jcp.2004.11.022.

    [13]

    G. Dal Maso, "An Introduction to $\Gamma$-convergence,'' Birkhäuser, Boston Basel Berlin, 1993.

    [14]

    M. Di Cristo and L. Rondi, Examples of exponential instability for inverse inclusion and scattering problems, Inverse Problems, 19 (2003), 685-701.doi: 10.1088/0266-5611/19/3/313.

    [15]

    D. C. Dobson and F. Santosa, An image-enhancement technique for electrical impedance tomography, Inverse Problems, 10 (1994), 317-334.doi: 10.1088/0266-5611/10/2/008.

    [16]

    H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,'' Kluwer Academic Publishers, Dordrecht Boston London, 1996.

    [17]

    T. Gallouet and A. Monier, On the regularity of solutions to elliptic equations, Rend. Mat. Appl. (7), 19 (1999), 471-488.

    [18]

    V. Isakov, On uniqueness of recovery of a discontinuous conductivity coefficient, Comm. Pure Appl. Math., 41 (1988), 865-877.doi: 10.1002/cpa.3160410702.

    [19]

    R. V. Kohn and M. Vogelius, Determining conductivity by boundary measurements II. Interior results, Comm. Pure Appl. Math., 38 (1985), 643-667.doi: 10.1002/cpa.3160380513.

    [20]

    A. Lechleiter and A. Rieder, Newton regularizations for impedance tomography: a numerical study, Inverse Problems, 22 (2006), 1967-1987.doi: 10.1088/0266-5611/22/6/004.

    [21]

    N. G. Meyers, An $L^p$-estimate for the gradient of solutions of second order elliptic divergence equations, Ann. Scuola Norm. Sup. Pisa (3), 17 (1963), 189-206.

    [22]

    D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Comm. Pure Appl. Math., 42 (1989), 577-685.doi: 10.1002/cpa.3160420503.

    [23]

    L. Rondi, A variational approach to the reconstruction of cracks by boundary measurements, J. Math. Pures Appl. (9), 87 (2007), 324-342.doi: 10.1016/j.matpur.2007.01.007.

    [24]

    L. Rondi and F. Santosa, Enhanced electrical impedance tomography via the Mumford-Shah functional, ESAIM Control Optim. Calc. Var., 6 (2001), 517-538.doi: 10.1051/cocv:2001121.

    [25]

    E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.doi: 10.1137/0152060.

    [26]

    J. Sylvester, An anisotropic inverse boundary value problem, Comm. Pure Appl. Math., 43 (1990), 201-232.doi: 10.1002/cpa.3160430203.

    [27]

    V. V. Vasin, Some tendencies in the Tikhonov regularization of ill-posed problems, J. Inverse Ill-Posed Probl., 14 (2006), 813-840.doi: 10.1515/156939406779768328.

    [28]

    V. V. Vasin, Some approaches to reconstruction of nonsmooth solutions of linear ill-posed problems, J. Inverse Ill-Posed Probl., 15 (2007), 625-640.doi: 10.1515/jiip.2007.035.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(97) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return