
Previous Article
Two dimensional histogram analysis using the Helmholtz principle
 IPI Home
 This Issue

Next Article
Stability estimates in stationary inverse transport
Fast dual minimization of the vectorial total variation norm and applications to color image processing
1.  Department of Mathematics, University of California, Los Angeles, CA 900951555, United States, United States 
[1] 
Rongliang Chen, Jizu Huang, XiaoChuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems & Imaging, 2019, 13 (6) : 12591282. doi: 10.3934/ipi.2019055 
[2] 
Feishe Chen, Lixin Shen, Yuesheng Xu, Xueying Zeng. The Moreau envelope approach for the L1/TV image denoising model. Inverse Problems & Imaging, 2014, 8 (1) : 5377. doi: 10.3934/ipi.2014.8.53 
[3] 
Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems & Imaging, 2013, 7 (2) : 499521. doi: 10.3934/ipi.2013.7.499 
[4] 
Jingwei Liang, Jia Li, Zuowei Shen, Xiaoqun Zhang. Wavelet frame based color image demosaicing. Inverse Problems & Imaging, 2013, 7 (3) : 777794. doi: 10.3934/ipi.2013.7.777 
[5] 
G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123132. doi: 10.3934/jimo.2005.1.123 
[6] 
Wei Zhu, XueCheng Tai, Tony Chan. Augmented Lagrangian method for a mean curvature based image denoising model. Inverse Problems & Imaging, 2013, 7 (4) : 14091432. doi: 10.3934/ipi.2013.7.1409 
[7] 
Michael Hintermüller, Monserrat RinconCamacho. An adaptive finite element method in $L^2$TVbased image denoising. Inverse Problems & Imaging, 2014, 8 (3) : 685711. doi: 10.3934/ipi.2014.8.685 
[8] 
Shi Yan, Jun Liu, Haiyang Huang, XueCheng Tai. A dual EM algorithm for TV regularized Gaussian mixture model in image segmentation. Inverse Problems & Imaging, 2019, 13 (3) : 653677. doi: 10.3934/ipi.2019030 
[9] 
Wei Wan, Haiyang Huang, Jun Liu. Local block operators and TV regularization based image inpainting. Inverse Problems & Imaging, 2018, 12 (6) : 13891410. doi: 10.3934/ipi.2018058 
[10] 
Fangfang Dong, Yunmei Chen. A fractionalorder derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 2750. doi: 10.3934/ipi.2016.10.27 
[11] 
Qiang Liu, Zhichang Guo, Chunpeng Wang. Renormalized solutions to a reactiondiffusion system applied to image denoising. Discrete & Continuous Dynamical Systems  B, 2016, 21 (6) : 18391858. doi: 10.3934/dcdsb.2016025 
[12] 
Juan Carlos De los Reyes, CarolaBibiane Schönlieb. Image denoising: Learning the noise model via nonsmooth PDEconstrained optimization. Inverse Problems & Imaging, 2013, 7 (4) : 11831214. doi: 10.3934/ipi.2013.7.1183 
[13] 
Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557575. doi: 10.3934/ipi.2007.1.557 
[14] 
Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 11871197. doi: 10.3934/jimo.2016.12.1187 
[15] 
Jie Huang, Marco Donatelli, Raymond H. Chan. Nonstationary iterated thresholding algorithms for image deblurring. Inverse Problems & Imaging, 2013, 7 (3) : 717736. doi: 10.3934/ipi.2013.7.717 
[16] 
Weina Wang, Chunlin Wu, Jiansong Deng. Piecewise constant signal and image denoising using a selective averaging method with multiple neighbors. Inverse Problems & Imaging, 2019, 13 (5) : 903930. doi: 10.3934/ipi.2019041 
[17] 
Kenji Nakanishi. Modified wave operators for the Hartree equation with data, image and convergence in the same space. Communications on Pure & Applied Analysis, 2002, 1 (2) : 237252. doi: 10.3934/cpaa.2002.1.237 
[18] 
Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449460. doi: 10.3934/ipi.2019022 
[19] 
Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems & Imaging, 2011, 5 (1) : 263284. doi: 10.3934/ipi.2011.5.263 
[20] 
Ruiliang Zhang, Xavier Bresson, Tony F. Chan, XueCheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 10991113. doi: 10.3934/ipi.2013.7.1099 
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]