
Previous Article
Unique continuation property for the elasticity with general residual stress
 IPI Home
 This Issue

Next Article
Full identification of acoustic sources with multiple frequencies and boundary measurements
Reconstruction of perfectly conducting rough surfaces by the use of inhomogeneous surface impedance modeling
1.  Istanbul Technical University, Electrical and Electronics Engineering Faculty, 34469 Maslak, Istanbul, Turkey, Turkey, Turkey, Turkey 
[1] 
Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 1938. doi: 10.3934/ipi.2010.4.19 
[2] 
Giovanni Alessandrini, Eva Sincich, Sergio Vessella. Stable determination of surface impedance on a rough obstacle by far field data. Inverse Problems and Imaging, 2013, 7 (2) : 341351. doi: 10.3934/ipi.2013.7.341 
[3] 
Hiroshi Isozaki. Inverse boundary value problems in the horosphere  A link between hyperbolic geometry and electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (1) : 107134. doi: 10.3934/ipi.2007.1.107 
[4] 
Jianliang Li, Jiaqing Yang, Bo Zhang. A linear sampling method for inverse acoustic scattering by a locally rough interface. Inverse Problems and Imaging, 2021, 15 (5) : 12471267. doi: 10.3934/ipi.2021036 
[5] 
Christodoulos E. Athanasiadis, Vassilios Sevroglou, Konstantinos I. Skourogiannis. The inverse electromagnetic scattering problem by a mixed impedance screen in chiral media. Inverse Problems and Imaging, 2015, 9 (4) : 951970. doi: 10.3934/ipi.2015.9.951 
[6] 
HuaiAn Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with farfield data. Inverse Problems and Imaging, 2019, 13 (4) : 721744. doi: 10.3934/ipi.2019033 
[7] 
Jorge Tejero. Reconstruction of rough potentials in the plane. Inverse Problems and Imaging, 2019, 13 (4) : 863878. doi: 10.3934/ipi.2019039 
[8] 
Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems and Imaging, 2013, 7 (1) : 199216. doi: 10.3934/ipi.2013.7.199 
[9] 
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793813. doi: 10.3934/ipi.2011.5.793 
[10] 
Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems and Imaging, 2008, 2 (4) : 577586. doi: 10.3934/ipi.2008.2.577 
[11] 
Fang Zeng. Extended sampling method for interior inverse scattering problems. Inverse Problems and Imaging, 2020, 14 (4) : 719731. doi: 10.3934/ipi.2020033 
[12] 
Gabriel Katz. Causal holography in application to the inverse scattering problems. Inverse Problems and Imaging, 2019, 13 (3) : 597633. doi: 10.3934/ipi.2019028 
[13] 
Tielei Zhu, Jiaqing Yang. A noniterative sampling method for inverse elastic wave scattering by rough surfaces. Inverse Problems and Imaging, , () : . doi: 10.3934/ipi.2022009 
[14] 
Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure and Applied Analysis, 2021, 20 (2) : 697735. doi: 10.3934/cpaa.2020286 
[15] 
Théophile ChaumontFrelet, Serge Nicaise, Jérôme Tomezyk. Uniform a priori estimates for elliptic problems with impedance boundary conditions. Communications on Pure and Applied Analysis, 2020, 19 (5) : 24452471. doi: 10.3934/cpaa.2020107 
[16] 
Mikko Kaasalainen. Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction. Inverse Problems and Imaging, 2011, 5 (1) : 3757. doi: 10.3934/ipi.2011.5.37 
[17] 
Simon Arridge, Pascal Fernsel, Andreas Hauptmann. Joint reconstruction and lowrank decomposition for dynamic inverse problems. Inverse Problems and Imaging, 2022, 16 (3) : 483523. doi: 10.3934/ipi.2021059 
[18] 
Jone Apraiz, Jin Cheng, Anna Doubova, Enrique FernándezCara, Masahiro Yamamoto. Uniqueness and numerical reconstruction for inverse problems dealing with interval size search. Inverse Problems and Imaging, 2022, 16 (3) : 569594. doi: 10.3934/ipi.2021062 
[19] 
Tan BuiThanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 11391155. doi: 10.3934/ipi.2013.7.1139 
[20] 
Alexei Rybkin. On the boundary control approach to inverse spectral and scattering theory for Schrödinger operators. Inverse Problems and Imaging, 2009, 3 (1) : 139149. doi: 10.3934/ipi.2009.3.139 
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]