August  2009, 3(3): 373-382. doi: 10.3934/ipi.2009.3.373

Range conditions for a spherical mean transform

1. 

Mathematics Department, Bar Ilan University, Ramat Gan 52900, Israel

2. 

Mathematics Department, Oregon State University, Corvallis, OR 97331-4605, United States

3. 

Mathematics Department, Texas A&M University, College Station, TX 77843-3368, United States

Received  February 2009 Revised  May 2009 Published  July 2009

The paper is devoted to the range description of the Radon type transform that averages a function over all spheres centered on a given sphere. Such transforms arise naturally in thermoacoustic tomography, a novel method of medical imaging. Range descriptions have recently been obtained for such transforms, and consisted of smoothness and support conditions, moment conditions, and some additional orthogonality conditions of spectral nature. It has been noticed that in odd dimensions, surprisingly, the moment conditions are superfluous and can be eliminated. It is shown in this text that in fact the same happens in any dimension.
Citation: Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems and Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373
[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[2]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems and Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[3]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure and Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[4]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems and Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[5]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems and Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[6]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems and Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[7]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems and Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[8]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[9]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[10]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems and Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[11]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems and Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[12]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[13]

Thaís Jordão, Xingping Sun. General types of spherical mean operators and $K$-functionals of fractional orders. Communications on Pure and Applied Analysis, 2015, 14 (3) : 743-757. doi: 10.3934/cpaa.2015.14.743

[14]

Torsten Görner, Ralf Hielscher, Stefan Kunis. Efficient and accurate computation of spherical mean values at scattered center points. Inverse Problems and Imaging, 2012, 6 (4) : 645-661. doi: 10.3934/ipi.2012.6.645

[15]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[16]

Alexander Barg, Oleg R. Musin. Codes in spherical caps. Advances in Mathematics of Communications, 2007, 1 (1) : 131-149. doi: 10.3934/amc.2007.1.131

[17]

Susanna V. Haziot. On the spherical geopotential approximation for Saturn. Communications on Pure and Applied Analysis, 2022, 21 (7) : 2327-2336. doi: 10.3934/cpaa.2022035

[18]

Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems and Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631

[19]

Tamar Friedlander, Naama Brenner. Adaptive response and enlargement of dynamic range. Mathematical Biosciences & Engineering, 2011, 8 (2) : 515-528. doi: 10.3934/mbe.2011.8.515

[20]

Mason A. Porter, Richard L. Liboff. The radially vibrating spherical quantum billiard. Conference Publications, 2001, 2001 (Special) : 310-318. doi: 10.3934/proc.2001.2001.310

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (126)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]