August  2009, 3(3): 453-464. doi: 10.3934/ipi.2009.3.453

A support theorem for the geodesic ray transform of symmetric tensor fields

1. 

110, 8th Street, Rensselaer Polytechnic Institute, Troy, NY 12180, United States

2. 

Department of Mathematics, Purdue University, West Lafayette, IN 47907, United States

Received  March 2008 Revised  March 2009 Published  July 2009

Let $(M,g)$ be a simple Riemannian manifold with boundary and consider the geodesic ray transform of symmetric 2-tensor fields. Let the integral of such a field $f$ along maximal geodesics vanish on an appropriate open subset of the space of geodesics in $M$. Under the assumption that the metric $g$ is real-analytic, it is shown that there exists a vector field $v$ satisfying $f=dv$ on the set of points lying on these geodesics and $v=0$ on the intersection of this set with the boundary ∂$ M$ of the manifold $M$. Using this result, a Helgason's type of a support theorem for the geodesic ray transform is proven. The approach is based on analytic microlocal techniques.
Citation: Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems & Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453
[1]

Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems & Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013

[2]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[3]

François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713

[4]

Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems & Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020

[5]

Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021047

[6]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[7]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[8]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[9]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

[10]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089

[11]

Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems & Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147

[12]

Liqun Qi, Chen Ling, Jinjie Liu, Chen Ouyang. An orthogonal equivalence theorem for third order tensors. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021154

[13]

Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317

[14]

Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619

[15]

Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems & Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143

[16]

Dezhong Chen, Li Ma. A Liouville type Theorem for an integral system. Communications on Pure & Applied Analysis, 2006, 5 (4) : 855-859. doi: 10.3934/cpaa.2006.5.855

[17]

Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems & Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

[18]

Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems & Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69

[19]

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015

[20]

Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems & Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (53)
  • HTML views (0)
  • Cited by (13)

Other articles
by authors

[Back to Top]