November  2009, 3(4): 567-597. doi: 10.3934/ipi.2009.3.567

On infinite-dimensional hierarchical probability models in statistical inverse problems

1. 

Department of Mathematics and System Analysis, Helsinki University of Technology, P.O. Box 1100 (Otakaari 1 M), FI-02015 TKK, Finland

Received  March 2009 Revised  August 2009 Published  October 2009

In this article, the solution of a statistical inverse problem $M = AU+$ε by the Bayesian approach is studied where $U$ is a function on the unit circle $\T$, i.e., a periodic signal. The mapping $A$ is a smoothing linear operator and ε a Gaussian noise. The connection to the solution of a finite-dimensional computational model $M_{kn} = A_k U_n + $εk is discussed. Furthermore, a novel hierarchical prior model for obtaining edge-preserving conditional mean estimates is introduced. The convergence of the method with respect to finer discretization is studied and the posterior distribution is shown to converge weakly. Finally, theoretical findings are illustrated by a numerical example with simulated data.
Citation: Tapio Helin. On infinite-dimensional hierarchical probability models in statistical inverse problems. Inverse Problems and Imaging, 2009, 3 (4) : 567-597. doi: 10.3934/ipi.2009.3.567
[1]

Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems and Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87

[2]

Christopher Oballe, Alan Cherne, Dave Boothe, Scott Kerick, Piotr J. Franaszczuk, Vasileios Maroulas. Bayesian topological signal processing. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 797-817. doi: 10.3934/dcdss.2021084

[3]

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems and Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561

[4]

Lassi Roininen, Mark Girolami, Sari Lasanen, Markku Markkanen. Hyperpriors for Matérn fields with applications in Bayesian inversion. Inverse Problems and Imaging, 2019, 13 (1) : 1-29. doi: 10.3934/ipi.2019001

[5]

Jiangqi Wu, Linjie Wen, Jinglai Li. Resampled ensemble Kalman inversion for Bayesian parameter estimation with sequential data. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 837-850. doi: 10.3934/dcdss.2021045

[6]

Chen Li, Matthew Dunlop, Georg Stadler. Bayesian neural network priors for edge-preserving inversion. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022022

[7]

Esther Klann, Ronny Ramlau, Wolfgang Ring. A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Problems and Imaging, 2011, 5 (1) : 137-166. doi: 10.3934/ipi.2011.5.137

[8]

Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems and Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028

[9]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems and Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[10]

Igor E. Shparlinski. Close values of shifted modular inversions and the decisional modular inversion hidden number problem. Advances in Mathematics of Communications, 2015, 9 (2) : 169-176. doi: 10.3934/amc.2015.9.169

[11]

Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029

[12]

Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061

[13]

Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete and Continuous Dynamical Systems, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17

[14]

Frank Natterer. Photo-acoustic inversion in convex domains. Inverse Problems and Imaging, 2012, 6 (2) : 315-320. doi: 10.3934/ipi.2012.6.315

[15]

Neil K. Chada, Claudia Schillings, Simon Weissmann. On the incorporation of box-constraints for ensemble Kalman inversion. Foundations of Data Science, 2019, 1 (4) : 433-456. doi: 10.3934/fods.2019018

[16]

Liying Wang, Weiguo Zhao, Dan Zhang, Linming Zhao. A geometric inversion algorithm for parameters calculation in Francis turbine. Discrete and Continuous Dynamical Systems - S, 2015, 8 (6) : 1373-1384. doi: 10.3934/dcdss.2015.8.1373

[17]

Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011

[18]

Peter Kuchment, Fatma Terzioglu. Inversion of weighted divergent beam and cone transforms. Inverse Problems and Imaging, 2017, 11 (6) : 1071-1090. doi: 10.3934/ipi.2017049

[19]

Laura Poggiolini, Marco Spadini. Local inversion of a class of piecewise regular maps. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2207-2224. doi: 10.3934/cpaa.2018105

[20]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, 2021, 29 (4) : 2657-2671. doi: 10.3934/era.2021007

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (87)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]