February  2009, 3(1): 69-85. doi: 10.3934/ipi.2009.3.69

A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data


Department of Computer Science, The Graduate Center, CUNY, NY 10016, United States, United States, United States


Center for Fundamental Research: ‘Metal Structures in Four Dimensions’, Risø DTU, Technical University of Denmark, DK-4000 Roskilde, Denmark, Denmark, Denmark

Received  April 2008 Revised  October 2008 Published  February 2009

An iterative search method is proposed for obtaining orientation maps inside polycrystals from three-dimensional X-ray diffraction (3DXRD) data. In each step, detector pixel intensities are calculated by a forward model based on the current estimate of the orientation map. The pixel at which the experimentally measured value most exceeds the simulated one is identified. This difference can only be reduced by changing the current estimate at a location from a relatively small subset of all possible locations in the estimate and, at each such location, an increase at the identified pixel can only be achieved by changing the orientation in only a few possible ways. The method selects the location/orientation pair indicated as best by a function that measures data consistency combined with prior information on orientation maps. The superiority of the method to a previously published forward projection Monte Carlo optimization is demonstrated on simulated data.
Citation: Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems & Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69

Zhenhua Zhao, Yining Zhu, Jiansheng Yang, Ming Jiang. Mumford-Shah-TV functional with application in X-ray interior tomography. Inverse Problems & Imaging, 2018, 12 (2) : 331-348. doi: 10.3934/ipi.2018015


Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471


Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089


François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713


Silvia Allavena, Michele Piana, Federico Benvenuto, Anna Maria Massone. An interpolation/extrapolation approach to X-ray imaging of solar flares. Inverse Problems & Imaging, 2012, 6 (2) : 147-162. doi: 10.3934/ipi.2012.6.147


Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems & Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020


Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems & Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257


Jakob S. Jørgensen, Emil Y. Sidky, Per Christian Hansen, Xiaochuan Pan. Empirical average-case relation between undersampling and sparsity in X-ray CT. Inverse Problems & Imaging, 2015, 9 (2) : 431-446. doi: 10.3934/ipi.2015.9.431


Weihao Shen, Wenbo Xu, Hongyang Zhang, Zexin Sun, Jianxiong Ma, Xinlong Ma, Shoujun Zhou, Shijie Guo, Yuanquan Wang. Automatic segmentation of the femur and tibia bones from X-ray images based on pure dilated residual U-Net. Inverse Problems & Imaging, 2021, 15 (6) : 1333-1346. doi: 10.3934/ipi.2020057


Alexander Balandin. The localized basis functions for scalar and vector 3D tomography and their ray transforms. Inverse Problems & Imaging, 2016, 10 (4) : 899-914. doi: 10.3934/ipi.2016026


Tim Kreutzmann, Andreas Rieder. Geometric reconstruction in bioluminescence tomography. Inverse Problems & Imaging, 2014, 8 (1) : 173-197. doi: 10.3934/ipi.2014.8.173


Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495


Natalia P. Bondarenko, Vjacheslav A. Yurko. A new approach to the inverse discrete transmission eigenvalue problem. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021073


Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399


Tianyu Yang, Yang Yang. A stable non-iterative reconstruction algorithm for the acoustic inverse boundary value problem. Inverse Problems & Imaging, 2022, 16 (1) : 1-18. doi: 10.3934/ipi.2021038


Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013


Christopher P. Grant. Grain sizes in the discrete Allen-Cahn and Cahn-Hilliard equations. Discrete & Continuous Dynamical Systems, 2001, 7 (1) : 127-146. doi: 10.3934/dcds.2001.7.127


Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems & Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047


Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111


Yan Liu, Wuwei Ren, Habib Ammari. Robust reconstruction of fluorescence molecular tomography with an optimized illumination pattern. Inverse Problems & Imaging, 2020, 14 (3) : 535-568. doi: 10.3934/ipi.2020025

2020 Impact Factor: 1.639


  • PDF downloads (101)
  • HTML views (0)
  • Cited by (5)

[Back to Top]