February  2009, 3(1): 87-122. doi: 10.3934/ipi.2009.3.87

Discretization-invariant Bayesian inversion and Besov space priors


Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68 (Gustaf Hallstromin katu 2b) FI-00014, Finland, Finland


Tampere University of Technology,Institute of Mathematics,, P.O. Box 553, 33101 Tampere

Received  February 2008 Revised  November 2008 Published  February 2009

Bayesian solution of an inverse problem for indirect measurement $M = AU + $ε is considered, where $U$ is a function on a domain of $\R^d$. Here $A$ is a smoothing linear operator and ε is Gaussian white noise. The data is a realization $m_k$ of the random variable $M_k = P_kA U+P_k$ε , where $P_k$ is a linear, finite dimensional operator related to measurement device. To allow computerized inversion, the unknown is discretized as $U_n=T_nU$, where $T_n$ is a finite dimensional projection, leading to the computational measurement model $M_{kn}=P_k A U_n + P_k$ε . Bayes formula gives then the posterior distribution

$\pi_{kn}(u_n\|\m_{kn})$~ Π n $(u_n)\exp(-\frac{1}{2}$||$\m_{kn} - P_kA u_n$||$\_2^2)$

in $\R^d$, and the mean $\u_{kn}$:$=\int u_n \ \pi_{kn}(u_n\|\m_k)\ du_n$ is considered as the reconstruction of $U$. We discuss a systematic way of choosing prior distributions Π n for all $n\geq n_0>0$ by achieving them as projections of a distribution in a infinite-dimensional limit case. Such choice of prior distributions is discretization-invariant in the sense that Π n represent the same a priori information for all $n$ and that the mean $\u_{kn}$ converges to a limit estimate as $k,n$→$\infty$. Gaussian smoothness priors and wavelet-based Besov space priors are shown to be discretization invariant. In particular, Bayesian inversion in dimension two with $B^1_11$ prior is related to penalizing the $\l^1$ norm of the wavelet coefficients of $U$.

Citation: Matti Lassas, Eero Saksman, Samuli Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems & Imaging, 2009, 3 (1) : 87-122. doi: 10.3934/ipi.2009.3.87

Lassi Roininen, Janne M. J. Huttunen, Sari Lasanen. Whittle-Matérn priors for Bayesian statistical inversion with applications in electrical impedance tomography. Inverse Problems & Imaging, 2014, 8 (2) : 561-586. doi: 10.3934/ipi.2014.8.561


Lassi Roininen, Mark Girolami, Sari Lasanen, Markku Markkanen. Hyperpriors for Matérn fields with applications in Bayesian inversion. Inverse Problems & Imaging, 2019, 13 (1) : 1-29. doi: 10.3934/ipi.2019001


Masoumeh Dashti, Stephen Harris, Andrew Stuart. Besov priors for Bayesian inverse problems. Inverse Problems & Imaging, 2012, 6 (2) : 183-200. doi: 10.3934/ipi.2012.6.183


Jiangqi Wu, Linjie Wen, Jinglai Li. Resampled ensemble Kalman inversion for Bayesian parameter estimation with sequential data. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021045


Tan Bui-Thanh, Omar Ghattas. A scalable algorithm for MAP estimators in Bayesian inverse problems with Besov priors. Inverse Problems & Imaging, 2015, 9 (1) : 27-53. doi: 10.3934/ipi.2015.9.27


Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069


Tan Bui-Thanh, Quoc P. Nguyen. FEM-based discretization-invariant MCMC methods for PDE-constrained Bayesian inverse problems. Inverse Problems & Imaging, 2016, 10 (4) : 943-975. doi: 10.3934/ipi.2016028


Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649


Didi Lv, Qingping Zhou, Jae Kyu Choi, Jinglai Li, Xiaoqun Zhang. Nonlocal TV-Gaussian prior for Bayesian inverse problems with applications to limited CT reconstruction. Inverse Problems & Imaging, 2020, 14 (1) : 117-132. doi: 10.3934/ipi.2019066


Igor E. Shparlinski. Close values of shifted modular inversions and the decisional modular inversion hidden number problem. Advances in Mathematics of Communications, 2015, 9 (2) : 169-176. doi: 10.3934/amc.2015.9.169


Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021029


Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032


Mila Nikolova. Model distortions in Bayesian MAP reconstruction. Inverse Problems & Imaging, 2007, 1 (2) : 399-422. doi: 10.3934/ipi.2007.1.399


Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems & Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061


Scott Nollet, Frederico Xavier. Global inversion via the Palais-Smale condition. Discrete & Continuous Dynamical Systems, 2002, 8 (1) : 17-28. doi: 10.3934/dcds.2002.8.17


Frank Natterer. Photo-acoustic inversion in convex domains. Inverse Problems & Imaging, 2012, 6 (2) : 315-320. doi: 10.3934/ipi.2012.6.315


Neil K. Chada, Claudia Schillings, Simon Weissmann. On the incorporation of box-constraints for ensemble Kalman inversion. Foundations of Data Science, 2019, 1 (4) : 433-456. doi: 10.3934/fods.2019018


Liying Wang, Weiguo Zhao, Dan Zhang, Linming Zhao. A geometric inversion algorithm for parameters calculation in Francis turbine. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1373-1384. doi: 10.3934/dcdss.2015.8.1373


Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011


Peter Kuchment, Fatma Terzioglu. Inversion of weighted divergent beam and cone transforms. Inverse Problems & Imaging, 2017, 11 (6) : 1071-1090. doi: 10.3934/ipi.2017049

2019 Impact Factor: 1.373


  • PDF downloads (59)
  • HTML views (0)
  • Cited by (66)

Other articles
by authors

[Back to Top]