
Previous Article
Identification of generalized impedance boundary conditions in inverse scattering problems
 IPI Home
 This Issue

Next Article
Spectral estimation and inverse initial boundary value problems
A theoretical framework for the regularization of Poisson likelihood estimation problems
1.  Department of Mathematical Sciences, University of Montana, Missoula, Montana 59812, United States 
$R_\alpha(A,z)= arg\min_{u\geq 0} \{T_0(Au;z)+\alpha J(u)\},$
where $T_0(Au;z)$ is the negativelog of the Poisson likelihood functional, and $\alpha>0$ and $J$ are the regularization parameter and functional, respectively. Our goal in this paper is to determine general conditions which guarantee that $R_\alpha$ defines a regularization scheme for $z=Au+\gamma$. Determining the appropriate definition for regularization scheme in this context is important: not only will it serve to unify previous theoretical arguments in this direction, it will provide a framework for future theoretical analyses. To illustrate the latter, we end the paper with an application of the general framework to a case in which an analysis has not been done.
[1] 
Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 111. doi: 10.3934/ipi.2007.1.1 
[2] 
Dang Van Hieu, Le Dung Muu, Pham Kim Quy. New iterative regularization methods for solving split variational inclusion problems. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021185 
[3] 
Johnathan M. Bardsley. An efficient computational method for total variationpenalized Poisson likelihood estimation. Inverse Problems and Imaging, 2008, 2 (2) : 167185. doi: 10.3934/ipi.2008.2.167 
[4] 
Tan BuiThanh, Omar Ghattas. Analysis of the Hessian for inverse scattering problems. Part III: Inverse medium scattering of electromagnetic waves in three dimensions. Inverse Problems and Imaging, 2013, 7 (4) : 11391155. doi: 10.3934/ipi.2013.7.1139 
[5] 
Sari Lasanen. NonGaussian statistical inverse problems. Part II: Posterior convergence for approximated unknowns. Inverse Problems and Imaging, 2012, 6 (2) : 267287. doi: 10.3934/ipi.2012.6.267 
[6] 
Tianxiao Wang. Characterizations of equilibrium controls in time inconsistent meanfield stochastic linear quadratic problems. I. Mathematical Control and Related Fields, 2019, 9 (2) : 385409. doi: 10.3934/mcrf.2019018 
[7] 
Sari Lasanen. NonGaussian statistical inverse problems. Part I: Posterior distributions. Inverse Problems and Imaging, 2012, 6 (2) : 215266. doi: 10.3934/ipi.2012.6.215 
[8] 
Durga Prasad Challa, Anupam Pal Choudhury, Mourad Sini. Mathematical imaging using electric or magnetic nanoparticles as contrast agents. Inverse Problems and Imaging, 2018, 12 (3) : 573605. doi: 10.3934/ipi.2018025 
[9] 
Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for nondestructive imaging. Inverse Problems and Imaging, 2022, 16 (1) : 6888. doi: 10.3934/ipi.2021041 
[10] 
T. Varslo, C E Yarman, M. Cheney, B Yazıcı. A variational approach to waveform design for syntheticaperture imaging. Inverse Problems and Imaging, 2007, 1 (3) : 577592. doi: 10.3934/ipi.2007.1.577 
[11] 
Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685691. doi: 10.3934/ipi.2010.4.685 
[12] 
Gabriel Peyré, Sébastien Bougleux, Laurent Cohen. Nonlocal regularization of inverse problems. Inverse Problems and Imaging, 2011, 5 (2) : 511530. doi: 10.3934/ipi.2011.5.511 
[13] 
Philipp Hungerländer, Barbara Kaltenbacher, Franz Rendl. Regularization of inverse problems via box constrained minimization. Inverse Problems and Imaging, 2020, 14 (3) : 437461. doi: 10.3934/ipi.2020021 
[14] 
Avner Friedman. PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7 (4) : 691703. doi: 10.3934/nhm.2012.7.691 
[15] 
Micol Amar, Andrea Braides. A characterization of variational convergence for segmentation problems. Discrete and Continuous Dynamical Systems, 1995, 1 (3) : 347369. doi: 10.3934/dcds.1995.1.347 
[16] 
Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343374. doi: 10.3934/jgm.2010.2.343 
[17] 
Deyue Zhang, Yue Wu, Yinglin Wang, Yukun Guo. A direct imaging method for the exterior and interior inverse scattering problems. Inverse Problems and Imaging, , () : . doi: 10.3934/ipi.2022025 
[18] 
Abraão D. C. Nascimento, Leandro C. Rêgo, Raphaela L. B. A. Nascimento. Compound truncated Poisson normal distribution: Mathematical properties and Moment estimation. Inverse Problems and Imaging, 2019, 13 (4) : 787803. doi: 10.3934/ipi.2019036 
[19] 
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems and Imaging, 2021, 15 (1) : II. doi: 10.3934/ipi.2021007 
[20] 
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems and Imaging, 2021, 15 (3) : 555597. doi: 10.3934/ipi.2021005 
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]