February  2010, 4(1): 191-210. doi: 10.3934/ipi.2010.4.191

Wavelet inpainting by nonlocal total variation

1. 

UCLA Mathematics Department, Box 951555, Los Angeles, CA 90095-1555, United States

2. 

The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Received  July 2009 Revised  November 2009 Published  February 2010

Wavelet inpainting problem consists of filling in missed data in the wavelet domain. In [17], Chan, Shen, and Zhou proposed an efficient method to recover piecewise constant or smooth images by combining total variation regularization and wavelet representations. In this paper, we extend it to nonlocal total variation regularization in order to recover textures and local geometry structures simultaneously. Moreover, we apply an efficient algorithm framework for both local and nonlocal regularizers. Extensive experimental results on a variety of loss scenarios and natural images validate the performance of this approach.
Citation: Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191
[1]

Xiaojing Ye, Haomin Zhou. Fast total variation wavelet inpainting via approximated primal-dual hybrid gradient algorithm. Inverse Problems and Imaging, 2013, 7 (3) : 1031-1050. doi: 10.3934/ipi.2013.7.1031

[2]

Yuyuan Ouyang, Yunmei Chen, Ying Wu. Total variation and wavelet regularization of orientation distribution functions in diffusion MRI. Inverse Problems and Imaging, 2013, 7 (2) : 565-583. doi: 10.3934/ipi.2013.7.565

[3]

Zhiwei Tian, Yanyan Shi, Meng Wang, Xiaolong Kong, Lei Li, Feng Fu. A wavelet frame constrained total generalized variation model for imaging conductivity distribution. Inverse Problems and Imaging, 2022, 16 (4) : 753-769. doi: 10.3934/ipi.2021074

[4]

Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059

[5]

You-Wei Wen, Raymond Honfu Chan. Using generalized cross validation to select regularization parameter for total variation regularization problems. Inverse Problems and Imaging, 2018, 12 (5) : 1103-1120. doi: 10.3934/ipi.2018046

[6]

Rinaldo M. Colombo, Francesca Monti. Solutions with large total variation to nonconservative hyperbolic systems. Communications on Pure and Applied Analysis, 2010, 9 (1) : 47-60. doi: 10.3934/cpaa.2010.9.47

[7]

Xianchao Xiu, Ying Yang, Wanquan Liu, Lingchen Kong, Meijuan Shang. An improved total variation regularized RPCA for moving object detection with dynamic background. Journal of Industrial and Management Optimization, 2020, 16 (4) : 1685-1698. doi: 10.3934/jimo.2019024

[8]

Yunho Kim, Paul M. Thompson, Luminita A. Vese. HARDI data denoising using vectorial total variation and logarithmic barrier. Inverse Problems and Imaging, 2010, 4 (2) : 273-310. doi: 10.3934/ipi.2010.4.273

[9]

Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064

[10]

Sören Bartels, Marijo Milicevic. Iterative finite element solution of a constrained total variation regularized model problem. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1207-1232. doi: 10.3934/dcdss.2017066

[11]

J. Mead. $ \chi^2 $ test for total variation regularization parameter selection. Inverse Problems and Imaging, 2020, 14 (3) : 401-421. doi: 10.3934/ipi.2020019

[12]

Wei Wang, Ling Pi, Michael K. Ng. Saturation-Value Total Variation model for chromatic aberration correction. Inverse Problems and Imaging, 2020, 14 (4) : 733-755. doi: 10.3934/ipi.2020034

[13]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[14]

Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008

[15]

Liyan Ma, Lionel Moisan, Jian Yu, Tieyong Zeng. A stable method solving the total variation dictionary model with $L^\infty$ constraints. Inverse Problems and Imaging, 2014, 8 (2) : 507-535. doi: 10.3934/ipi.2014.8.507

[16]

Lu Liu, Zhi-Feng Pang, Yuping Duan. Retinex based on exponent-type total variation scheme. Inverse Problems and Imaging, 2018, 12 (5) : 1199-1217. doi: 10.3934/ipi.2018050

[17]

Leyu Hu, Wenxing Zhang, Xingju Cai, Deren Han. A parallel operator splitting algorithm for solving constrained total-variation retinex. Inverse Problems and Imaging, 2020, 14 (6) : 1135-1156. doi: 10.3934/ipi.2020058

[18]

Juan Carlos De los Reyes, Estefanía Loayza-Romero. Total generalized variation regularization in data assimilation for Burgers' equation. Inverse Problems and Imaging, 2019, 13 (4) : 755-786. doi: 10.3934/ipi.2019035

[19]

Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237

[20]

Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems and Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (245)
  • HTML views (0)
  • Cited by (45)

Other articles
by authors

[Back to Top]