May  2010, 4(2): 223-240. doi: 10.3934/ipi.2010.4.223

A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data

1. 

Department of Mathematics, University of Florida, Gainesville, FL 32611, United States

2. 

Advanced Concept Development, Invivo Corporation, 3545 SW 47th Avenue, Gainesville, FL 32608, United States

Received  March 2009 Revised  January 2010 Published  May 2010

The aim of this work is to improve the accuracy, robustness and efficiency of the compressed sensing reconstruction technique in magnetic resonance imaging. We propose a novel variational model that enforces the sparsity of the underlying image in terms of its spatial finite differences and representation with respect to a dictionary. The dictionary is trained using prior information to improve accuracy in reconstruction. In the meantime the proposed model enforces the consistency of the underlying image with acquired data by using the maximum likelihood estimator of the reconstruction error in partial $k$-space to improve the robustness to parameter selection. Moreover, a simple and fast numerical scheme is provided to solve this model. The experimental results on both synthetic and in vivo data indicate the improvement of the proposed model in preservation of fine structures, flexibility of parameter decision, and reduction of computational cost.
Citation: Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223
[1]

Yingying Li, Stanley Osher. Coordinate descent optimization for l1 minimization with application to compressed sensing; a greedy algorithm. Inverse Problems & Imaging, 2009, 3 (3) : 487-503. doi: 10.3934/ipi.2009.3.487

[2]

Steven L. Brunton, Joshua L. Proctor, Jonathan H. Tu, J. Nathan Kutz. Compressed sensing and dynamic mode decomposition. Journal of Computational Dynamics, 2015, 2 (2) : 165-191. doi: 10.3934/jcd.2015002

[3]

Yong Wang, Wanquan Liu, Guanglu Zhou. An efficient algorithm for non-convex sparse optimization. Journal of Industrial & Management Optimization, 2019, 15 (4) : 2009-2021. doi: 10.3934/jimo.2018134

[4]

Ying Zhang, Ling Ma, Zheng-Hai Huang. On phaseless compressed sensing with partially known support. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-8. doi: 10.3934/jimo.2019014

[5]

Kanghui Guo and Demetrio Labate. Sparse shearlet representation of Fourier integral operators. Electronic Research Announcements, 2007, 14: 7-19. doi: 10.3934/era.2007.14.7

[6]

Song Li, Junhong Lin. Compressed sensing with coherent tight frames via $l_q$-minimization for $0 < q \leq 1$. Inverse Problems & Imaging, 2014, 8 (3) : 761-777. doi: 10.3934/ipi.2014.8.761

[7]

Murat Adivar, Shu-Cherng Fang. Convex optimization on mixed domains. Journal of Industrial & Management Optimization, 2012, 8 (1) : 189-227. doi: 10.3934/jimo.2012.8.189

[8]

Zhifeng Dai, Fenghua Wen. A generalized approach to sparse and stable portfolio optimization problem. Journal of Industrial & Management Optimization, 2018, 14 (4) : 1651-1666. doi: 10.3934/jimo.2018025

[9]

Shuhua Xu, Fei Gao. Weighted two-phase supervised sparse representation based on Gaussian for face recognition. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1385-1400. doi: 10.3934/dcdss.2015.8.1385

[10]

Anulekha Dhara, Aparna Mehra. Conjugate duality for generalized convex optimization problems. Journal of Industrial & Management Optimization, 2007, 3 (3) : 415-427. doi: 10.3934/jimo.2007.3.415

[11]

Igor Griva, Roman A. Polyak. Proximal point nonlinear rescaling method for convex optimization. Numerical Algebra, Control & Optimization, 2011, 1 (2) : 283-299. doi: 10.3934/naco.2011.1.283

[12]

Nobuko Sagara, Masao Fukushima. trust region method for nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2005, 1 (2) : 171-180. doi: 10.3934/jimo.2005.1.171

[13]

Adil Bagirov, Sona Taheri, Soodabeh Asadi. A difference of convex optimization algorithm for piecewise linear regression. Journal of Industrial & Management Optimization, 2019, 15 (2) : 909-932. doi: 10.3934/jimo.2018077

[14]

Zhongliang Deng, Enwen Hu. Error minimization with global optimization for difference of convex functions. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1027-1033. doi: 10.3934/dcdss.2019070

[15]

Jae Deok Kim, Ganguk Hwang. Cross-layer modeling and optimization of multi-channel cognitive radio networks under imperfect channel sensing. Journal of Industrial & Management Optimization, 2015, 11 (3) : 807-828. doi: 10.3934/jimo.2015.11.807

[16]

Jian-Wu Xue, Xiao-Kun Xu, Feng Zhang. Big data dynamic compressive sensing system architecture and optimization algorithm for internet of things. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1401-1414. doi: 10.3934/dcdss.2015.8.1401

[17]

Lipu Zhang, Yinghong Xu, Zhengjing Jin. An efficient algorithm for convex quadratic semi-definite optimization. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 129-144. doi: 10.3934/naco.2012.2.129

[18]

Dan Li, Li-Ping Pang, Fang-Fang Guo, Zun-Quan Xia. An alternating linearization method with inexact data for bilevel nonsmooth convex optimization. Journal of Industrial & Management Optimization, 2014, 10 (3) : 859-869. doi: 10.3934/jimo.2014.10.859

[19]

Radu Ioan Boţ, Anca Grad, Gert Wanka. Sequential characterization of solutions in convex composite programming and applications to vector optimization. Journal of Industrial & Management Optimization, 2008, 4 (4) : 767-782. doi: 10.3934/jimo.2008.4.767

[20]

Fan Jiang, Zhongming Wu, Xingju Cai. Generalized ADMM with optimal indefinite proximal term for linearly constrained convex optimization. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-22. doi: 10.3934/jimo.2018181

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (33)

Other articles
by authors

[Back to Top]