Advanced Search
Article Contents
Article Contents

Detection of shape deformities using Yamabe flow and Beltrami coefficients

Abstract Related Papers Cited by
  • We address the problem of detecting deformities on elastic surfaces. This is of great importance for shape analysis, with applications such as detecting abnormalities in biological shapes (e.g., brain structures). We propose an effective algorithm to detect abnormal deformations by generating quasi-conformal maps between the original and deformed surfaces. We firstly flatten the 3D surfaces conformally onto 2D rectangles using the discrete Yamabe flow and use them to compute a quasi-conformal map that matches internal features lying within the surfaces. The deformities on the elastic surface are formulated as non-conformal deformations, whereas normal deformations that preserve local geometry are formulated as conformal deformations. We then detect abnormalities by computing the Beltrami coefficient associated uniquely with the quasi-conformal map. The Beltrami coefficient is a complex-valued function defined on the surface. It describes the deviation of the deformation from conformality at each point. By considering the norm of the Beltrami coefficient, we can effectively segment the regions of abnormal changes, which are invariant under normal (non-rigid) deformations that preserve local geometry. Furthermore, by considering the argument of the Beltrami coefficient, we can capture abnormalities induced by local rotational changes. We tested the algorithm by detecting abnormalities on synthetic surfaces, 3D human face data and MRI-derived brain surfaces. Experimental results show that our algorithm can effectively detect abnormalities and capture local rotational alterations. Our method is also more effective than other existing methods, such as the isometric indicator, for locating abnormalities.
    Mathematics Subject Classification: Primary: 53B20, 30L10, 53C21; Secondary: 53B21, 92-08.


    \begin{equation} \\ \end{equation}
  • 加载中

Article Metrics

HTML views() PDF downloads(133) Cited by(0)

Access History



    DownLoad:  Full-Size Img  PowerPoint