-
Previous Article
Stability of Calderón's inverse conductivity problem in the plane for discontinuous conductivities
- IPI Home
- This Issue
-
Next Article
Identification of generalized impedance boundary conditions in inverse scattering problems
New results on transmission eigenvalues
1. | Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19716-2553 |
2. | Department of Mathematics, National Technical University of Athens, Zografou Campus, 15780 Athens, Greece |
[1] |
Yuebin Hao. Electromagnetic interior transmission eigenvalue problem for an inhomogeneous medium with a conductive boundary. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1387-1397. doi: 10.3934/cpaa.2020068 |
[2] |
Michele Di Cristo. Stability estimates in the inverse transmission scattering problem. Inverse Problems and Imaging, 2009, 3 (4) : 551-565. doi: 10.3934/ipi.2009.3.551 |
[3] |
David Colton, Lassi Päivärinta, John Sylvester. The interior transmission problem. Inverse Problems and Imaging, 2007, 1 (1) : 13-28. doi: 10.3934/ipi.2007.1.13 |
[4] |
Vesselin Petkov, Georgi Vodev. Localization of the interior transmission eigenvalues for a ball. Inverse Problems and Imaging, 2017, 11 (2) : 355-372. doi: 10.3934/ipi.2017017 |
[5] |
Luc Robbiano. Counting function for interior transmission eigenvalues. Mathematical Control and Related Fields, 2016, 6 (1) : 167-183. doi: 10.3934/mcrf.2016.6.167 |
[6] |
Kyoungsun Kim, Gen Nakamura, Mourad Sini. The Green function of the interior transmission problem and its applications. Inverse Problems and Imaging, 2012, 6 (3) : 487-521. doi: 10.3934/ipi.2012.6.487 |
[7] |
Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems and Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291 |
[8] |
Fioralba Cakoni, Anne Cossonnière, Houssem Haddar. Transmission eigenvalues for inhomogeneous media containing obstacles. Inverse Problems and Imaging, 2012, 6 (3) : 373-398. doi: 10.3934/ipi.2012.6.373 |
[9] |
Natalia P. Bondarenko, Vjacheslav A. Yurko. A new approach to the inverse discrete transmission eigenvalue problem. Inverse Problems and Imaging, 2022, 16 (4) : 739-751. doi: 10.3934/ipi.2021073 |
[10] |
Fioralba Cakoni, Shixu Meng, Jingni Xiao. A note on transmission eigenvalues in electromagnetic scattering theory. Inverse Problems and Imaging, 2021, 15 (5) : 999-1014. doi: 10.3934/ipi.2021025 |
[11] |
Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems and Imaging, 2021, 15 (3) : 445-474. doi: 10.3934/ipi.2020075 |
[12] |
Fioralba Cakoni, Houssem Haddar. A variational approach for the solution of the electromagnetic interior transmission problem for anisotropic media. Inverse Problems and Imaging, 2007, 1 (3) : 443-456. doi: 10.3934/ipi.2007.1.443 |
[13] |
Andreas Kirsch. An integral equation approach and the interior transmission problem for Maxwell's equations. Inverse Problems and Imaging, 2007, 1 (1) : 159-179. doi: 10.3934/ipi.2007.1.159 |
[14] |
Fioralba Cakoni, Houssem Haddar, Isaac Harris. Homogenization of the transmission eigenvalue problem for periodic media and application to the inverse problem. Inverse Problems and Imaging, 2015, 9 (4) : 1025-1049. doi: 10.3934/ipi.2015.9.1025 |
[15] |
Jiangfeng Huang, Zhiliang Deng, Liwei Xu. A Bayesian level set method for an inverse medium scattering problem in acoustics. Inverse Problems and Imaging, 2021, 15 (5) : 1077-1097. doi: 10.3934/ipi.2021029 |
[16] |
Brian Sleeman. The inverse acoustic obstacle scattering problem and its interior dual. Inverse Problems and Imaging, 2009, 3 (2) : 211-229. doi: 10.3934/ipi.2009.3.211 |
[17] |
Johannes Elschner, Guanghui Hu. Uniqueness in inverse transmission scattering problems for multilayered obstacles. Inverse Problems and Imaging, 2011, 5 (4) : 793-813. doi: 10.3934/ipi.2011.5.793 |
[18] |
Fioralba Cakoni, Shari Moskow, Scott Rome. The perturbation of transmission eigenvalues for inhomogeneous media in the presence of small penetrable inclusions. Inverse Problems and Imaging, 2015, 9 (3) : 725-748. doi: 10.3934/ipi.2015.9.725 |
[19] |
Andreas Kirsch. On the existence of transmission eigenvalues. Inverse Problems and Imaging, 2009, 3 (2) : 155-172. doi: 10.3934/ipi.2009.3.155 |
[20] |
Guillermo Reyes, Juan-Luis Vázquez. The Cauchy problem for the inhomogeneous porous medium equation. Networks and Heterogeneous Media, 2006, 1 (2) : 337-351. doi: 10.3934/nhm.2006.1.337 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]