-
Previous Article
Reconstructing electromagnetic obstacles by the enclosure method
- IPI Home
- This Issue
-
Next Article
A variational setting for volume constrained image registration
A two-level domain decomposition method for image restoration
1. | Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore, Singapore |
[1] |
Haijuan Hu, Jacques Froment, Baoyan Wang, Xiequan Fan. Spatial-Frequency domain nonlocal total variation for image denoising. Inverse Problems and Imaging, 2020, 14 (6) : 1157-1184. doi: 10.3934/ipi.2020059 |
[2] |
Daijun Jiang, Hui Feng, Jun Zou. Overlapping domain decomposition methods for linear inverse problems. Inverse Problems and Imaging, 2015, 9 (1) : 163-188. doi: 10.3934/ipi.2015.9.163 |
[3] |
Xavier Bresson, Tony F. Chan. Fast dual minimization of the vectorial total variation norm and applications to color image processing. Inverse Problems and Imaging, 2008, 2 (4) : 455-484. doi: 10.3934/ipi.2008.2.455 |
[4] |
Ke Chen, Yiqiu Dong, Michael Hintermüller. A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration. Inverse Problems and Imaging, 2011, 5 (2) : 323-339. doi: 10.3934/ipi.2011.5.323 |
[5] |
Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems and Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237 |
[6] |
Wei Wang, Ling Pi, Michael K. Ng. Saturation-Value Total Variation model for chromatic aberration correction. Inverse Problems and Imaging, 2020, 14 (4) : 733-755. doi: 10.3934/ipi.2020034 |
[7] |
Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems and Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421 |
[8] |
Mujibur Rahman Chowdhury, Jun Zhang, Jing Qin, Yifei Lou. Poisson image denoising based on fractional-order total variation. Inverse Problems and Imaging, 2020, 14 (1) : 77-96. doi: 10.3934/ipi.2019064 |
[9] |
Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems and Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547 |
[10] |
Juan C. Moreno, V. B. Surya Prasath, João C. Neves. Color image processing by vectorial total variation with gradient channels coupling. Inverse Problems and Imaging, 2016, 10 (2) : 461-497. doi: 10.3934/ipi.2016008 |
[11] |
Zhengmeng Jin, Chen Zhou, Michael K. Ng. A coupled total variation model with curvature driven for image colorization. Inverse Problems and Imaging, 2016, 10 (4) : 1037-1055. doi: 10.3934/ipi.2016031 |
[12] |
Sudeb Majee, Subit K. Jain, Rajendra K. Ray, Ananta K. Majee. A fuzzy edge detector driven telegraph total variation model for image despeckling. Inverse Problems and Imaging, 2022, 16 (2) : 367-396. doi: 10.3934/ipi.2021054 |
[13] |
Rongliang Chen, Jizu Huang, Xiao-Chuan Cai. A parallel domain decomposition algorithm for large scale image denoising. Inverse Problems and Imaging, 2019, 13 (6) : 1259-1282. doi: 10.3934/ipi.2019055 |
[14] |
Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems and Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046 |
[15] |
Nahid Banihashemi, C. Yalçın Kaya. Inexact restoration and adaptive mesh refinement for optimal control. Journal of Industrial and Management Optimization, 2014, 10 (2) : 521-542. doi: 10.3934/jimo.2014.10.521 |
[16] |
Baoli Shi, Zhi-Feng Pang, Jing Xu. Image segmentation based on the hybrid total variation model and the K-means clustering strategy. Inverse Problems and Imaging, 2016, 10 (3) : 807-828. doi: 10.3934/ipi.2016022 |
[17] |
Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control and Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013 |
[18] |
Xiaoqun Zhang, Tony F. Chan. Wavelet inpainting by nonlocal total variation. Inverse Problems and Imaging, 2010, 4 (1) : 191-210. doi: 10.3934/ipi.2010.4.191 |
[19] |
Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems and Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733 |
[20] |
Amir Averbuch, Pekka Neittaanmäki, Valery Zheludev. Periodic spline-based frames for image restoration. Inverse Problems and Imaging, 2015, 9 (3) : 661-707. doi: 10.3934/ipi.2015.9.661 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]