November  2010, 4(4): 571-577. doi: 10.3934/ipi.2010.4.571

Mathematical reminiscences

1. 

Department of Mathematics, Stockholm University, SE-10691 Stockholm, Sweden

Published  September 2010

N/A
Citation: Jan Boman. Mathematical reminiscences. Inverse Problems & Imaging, 2010, 4 (4) : 571-577. doi: 10.3934/ipi.2010.4.571
References:
[1]

J. Boman, On the propagation of analyticity of solutions of differential equations with constant coefficients,, Ark. Mat., 5 (1964), 271.  doi: doi:10.1007/BF02591127.  Google Scholar

[2]

J. Boman, On the intersection of classes of infinitely differentiable functions,, Ark. Mat., 5 (1964), 301.  doi: doi:10.1007/BF02591130.  Google Scholar

[3]

J. Boman, Partial regularity of mappings between Euclidean spaces,, Acta Math., 119 (1967), 1.  doi: doi:10.1007/BF02392077.  Google Scholar

[4]

J. Boman, Differentiability of a function and of its compositions with functions of one variable,, Math. Scand., 20 (1967), 249.   Google Scholar

[5]

J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity,, Bull. Amer. Math. Soc., 75 (1969), 1266.  doi: doi:10.1090/S0002-9904-1969-12387-6.  Google Scholar

[6]

J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity,, Ark. Mat., 9 (1971), 91.  doi: doi:10.1007/BF02383639.  Google Scholar

[7]

J. Boman, Saturation problems and distribution theory,, Appendix I in, (1971), 249.   Google Scholar

[8]

J. Boman, Equivalence of generalized moduli of continuity,, Ark. Mat., 18 (1980), 73.  doi: doi:10.1007/BF02384682.  Google Scholar

[9]

J. Boman, On the closure of spaces of sums of ridge functions and the range of the X-ray transform,, Ann. Inst. Fourier (Grenoble), 34 (1984), 207.   Google Scholar

[10]

J. Boman, An example of non-uniqueness for a generalized Radon transform,, J. d'Anal. Math., 61 (1993), 395.  doi: doi:10.1007/BF02788850.  Google Scholar

[11]

J. Boman, (joint work with E. T. Quinto) Support theorems for real-analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: doi:10.1215/S0012-7094-87-05547-5.  Google Scholar

[12]

J. Boman, The sum of two plane convex $C^{\infty}$ sets is not always $C^5$,, Math. Scand., 66 (1990), 216.   Google Scholar

[13]

J. Boman, Smoothness of sums of convex sets with real analytic boundaries,, Math. Scand., 66 (1990), 225.   Google Scholar

[14]

J. Boman, (joint work with E. T. Quinto), Support theorems for real-analytic Radon transforms on line complexes in three-space,, Trans. Amer. Math. Soc., 335 (1993), 877.  doi: doi:10.2307/2154410.  Google Scholar

[15]

J. Boman, Helgason's support theorem for Radon transforms - a new proof and a generalization,, Lecture Notes in Mathematics no. 1497 (1989), (1989), 1.   Google Scholar

[16]

J. Boman, A local vanishing theorem for distributions,, C. R. Acad. Sci. Paris, 315 (1992), 1231.   Google Scholar

[17]

J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms,, Contemp. Math., 140 (1992), 23.   Google Scholar

[18]

J. Boman, Microlocal quasianalyticity for distributions and ultradistributions,, Publ. RIMS (Kyoto), 31 (1995), 1079.  doi: (MR1382568) doi:10.2977/prims/1195163598.  Google Scholar

[19]

J. Boman, (joint work with Svante Linusson), Examples of non-uniqueness for the combinatorial Radon transform modulo the symmetric group,, Math. Scand., 78 (1996), 207.   Google Scholar

[20]

J. Boman, Uniqueness and non-uniqueness for microanalytic continuation of hyperfunctions,, Contemp. Math., 251 (2000), 61.   Google Scholar

[21]

J. Boman, (joint work with Lars Hörmander), A Payley-Wiener theorem for the analytic wave front set,, Asian J. Math., 3 (1999), 757.   Google Scholar

[22]

J. Boman, (joint work with Jan-Olov Strömberg), Novikov's inversion formula for the attenuated Radon transform-A new approach,, J. Geom. Anal., 14 (2004), 185.   Google Scholar

[23]

J. Boman, (joint work with Filip Lindskog), Support theorems for the Radon transform and Cramér-Wold theorems,, J. Theor. Probab., 22 (2008), 683.  doi: doi:10.1007/s10959-008-0151-0.  Google Scholar

[24]

J. Boman, The mathematics of tomography. On a mathematical theory with many new applications (Swedish),, Normat, 56 (2008), 177.   Google Scholar

[25]

J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform,, Inverse Probl. Imaging, ().   Google Scholar

[26]

J. Boman, (joint work with Dieudonné Agbor), On the modulus of continuity of mappings between Euclidean spaces,, to appear in Math. Scand., ().   Google Scholar

[27]

J. Boman, A local uniqueness theorem for a weighted Radon transform,, Inverse Probl. Imaging, ().   Google Scholar

[28]

J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes,, C. R. Acad. Sci. Paris, 347 (2009), 1351.   Google Scholar

[29]

L. Hörmander, "The Analysis of Linear Partial Differential Operators,'' Vol. 1,, Springer-Verlag, (1983).   Google Scholar

[30]

R. G. Novikov, An inversion formula for the attenuated X-ray transform,, Ark. Mat., 40 (2002), 145.  doi: doi:10.1007/BF02384507.  Google Scholar

[31]

S. Gindikin, A Remark on the weighted Radon transform on the plane,, J. Inverse Probl. Imaging, ().   Google Scholar

[32]

H. S. Shapiro, A Tauberian theorem related to approximation theory,, Acta Math., 120 (1968), 279.  doi: doi:10.1007/BF02394612.  Google Scholar

show all references

References:
[1]

J. Boman, On the propagation of analyticity of solutions of differential equations with constant coefficients,, Ark. Mat., 5 (1964), 271.  doi: doi:10.1007/BF02591127.  Google Scholar

[2]

J. Boman, On the intersection of classes of infinitely differentiable functions,, Ark. Mat., 5 (1964), 301.  doi: doi:10.1007/BF02591130.  Google Scholar

[3]

J. Boman, Partial regularity of mappings between Euclidean spaces,, Acta Math., 119 (1967), 1.  doi: doi:10.1007/BF02392077.  Google Scholar

[4]

J. Boman, Differentiability of a function and of its compositions with functions of one variable,, Math. Scand., 20 (1967), 249.   Google Scholar

[5]

J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity,, Bull. Amer. Math. Soc., 75 (1969), 1266.  doi: doi:10.1090/S0002-9904-1969-12387-6.  Google Scholar

[6]

J. Boman, (joint work with H. S. Shapiro), Comparison theorems for a generalized modulus of continuity,, Ark. Mat., 9 (1971), 91.  doi: doi:10.1007/BF02383639.  Google Scholar

[7]

J. Boman, Saturation problems and distribution theory,, Appendix I in, (1971), 249.   Google Scholar

[8]

J. Boman, Equivalence of generalized moduli of continuity,, Ark. Mat., 18 (1980), 73.  doi: doi:10.1007/BF02384682.  Google Scholar

[9]

J. Boman, On the closure of spaces of sums of ridge functions and the range of the X-ray transform,, Ann. Inst. Fourier (Grenoble), 34 (1984), 207.   Google Scholar

[10]

J. Boman, An example of non-uniqueness for a generalized Radon transform,, J. d'Anal. Math., 61 (1993), 395.  doi: doi:10.1007/BF02788850.  Google Scholar

[11]

J. Boman, (joint work with E. T. Quinto) Support theorems for real-analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: doi:10.1215/S0012-7094-87-05547-5.  Google Scholar

[12]

J. Boman, The sum of two plane convex $C^{\infty}$ sets is not always $C^5$,, Math. Scand., 66 (1990), 216.   Google Scholar

[13]

J. Boman, Smoothness of sums of convex sets with real analytic boundaries,, Math. Scand., 66 (1990), 225.   Google Scholar

[14]

J. Boman, (joint work with E. T. Quinto), Support theorems for real-analytic Radon transforms on line complexes in three-space,, Trans. Amer. Math. Soc., 335 (1993), 877.  doi: doi:10.2307/2154410.  Google Scholar

[15]

J. Boman, Helgason's support theorem for Radon transforms - a new proof and a generalization,, Lecture Notes in Mathematics no. 1497 (1989), (1989), 1.   Google Scholar

[16]

J. Boman, A local vanishing theorem for distributions,, C. R. Acad. Sci. Paris, 315 (1992), 1231.   Google Scholar

[17]

J. Boman, Holmgren's uniqueness theorem and support theorems for real analytic Radon transforms,, Contemp. Math., 140 (1992), 23.   Google Scholar

[18]

J. Boman, Microlocal quasianalyticity for distributions and ultradistributions,, Publ. RIMS (Kyoto), 31 (1995), 1079.  doi: (MR1382568) doi:10.2977/prims/1195163598.  Google Scholar

[19]

J. Boman, (joint work with Svante Linusson), Examples of non-uniqueness for the combinatorial Radon transform modulo the symmetric group,, Math. Scand., 78 (1996), 207.   Google Scholar

[20]

J. Boman, Uniqueness and non-uniqueness for microanalytic continuation of hyperfunctions,, Contemp. Math., 251 (2000), 61.   Google Scholar

[21]

J. Boman, (joint work with Lars Hörmander), A Payley-Wiener theorem for the analytic wave front set,, Asian J. Math., 3 (1999), 757.   Google Scholar

[22]

J. Boman, (joint work with Jan-Olov Strömberg), Novikov's inversion formula for the attenuated Radon transform-A new approach,, J. Geom. Anal., 14 (2004), 185.   Google Scholar

[23]

J. Boman, (joint work with Filip Lindskog), Support theorems for the Radon transform and Cramér-Wold theorems,, J. Theor. Probab., 22 (2008), 683.  doi: doi:10.1007/s10959-008-0151-0.  Google Scholar

[24]

J. Boman, The mathematics of tomography. On a mathematical theory with many new applications (Swedish),, Normat, 56 (2008), 177.   Google Scholar

[25]

J. Boman, Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform,, Inverse Probl. Imaging, ().   Google Scholar

[26]

J. Boman, (joint work with Dieudonné Agbor), On the modulus of continuity of mappings between Euclidean spaces,, to appear in Math. Scand., ().   Google Scholar

[27]

J. Boman, A local uniqueness theorem for a weighted Radon transform,, Inverse Probl. Imaging, ().   Google Scholar

[28]

J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes,, C. R. Acad. Sci. Paris, 347 (2009), 1351.   Google Scholar

[29]

L. Hörmander, "The Analysis of Linear Partial Differential Operators,'' Vol. 1,, Springer-Verlag, (1983).   Google Scholar

[30]

R. G. Novikov, An inversion formula for the attenuated X-ray transform,, Ark. Mat., 40 (2002), 145.  doi: doi:10.1007/BF02384507.  Google Scholar

[31]

S. Gindikin, A Remark on the weighted Radon transform on the plane,, J. Inverse Probl. Imaging, ().   Google Scholar

[32]

H. S. Shapiro, A Tauberian theorem related to approximation theory,, Acta Math., 120 (1968), 279.  doi: doi:10.1007/BF02394612.  Google Scholar

[1]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[2]

Philippe G. Ciarlet, Liliana Gratie, Cristinel Mardare. Intrinsic methods in elasticity: a mathematical survey. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 133-164. doi: 10.3934/dcds.2009.23.133

[3]

M. Dambrine, B. Puig, G. Vallet. A mathematical model for marine dinoflagellates blooms. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 615-633. doi: 10.3934/dcdss.2020424

[4]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[5]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[6]

Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382

[7]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[8]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[9]

Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari. Mathematical analysis of a three-tiered food-web in the chemostat. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020369

[10]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[11]

Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005

[12]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]