November  2010, 4(4): 579-598. doi: 10.3934/ipi.2010.4.579

Inverse problems for quantum trees II: Recovering matching conditions for star graphs

1. 

Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK 99775-6660

2. 

Dept. of Mathematics, LTH, Lund Univ., Box 118, 221 00 Lund

3. 

Institute of Mathematics, PAN, ul. Św.Tomasza 30, 31-027 Kraków, Poland

Received  November 2009 Revised  May 2010 Published  September 2010

The inverse problem for the Schrödinger operator on a star graph is investigated. It is proven that such Schrödinger operator, i.e. the graph, the real potential on it and the matching conditions at the central vertex, can be reconstructed from the Titchmarsh-Weyl matrix function associated with the graph boundary. The reconstruction is also unique if the spectral data include not the whole Titchmarsh-Weyl function but its principal block (the matrix reduced by one dimension). The same result holds true if instead of the Titchmarsh-Weyl function the dynamical response operator or just its principal block is known.
Citation: Sergei Avdonin, Pavel Kurasov, Marlena Nowaczyk. Inverse problems for quantum trees II: Recovering matching conditions for star graphs. Inverse Problems and Imaging, 2010, 4 (4) : 579-598. doi: 10.3934/ipi.2010.4.579
References:
[1]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Problems and Imaging, 2 (2008), 1-21.

[2]

S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, Zeit. Angew. Math. Mech., 90 (2010), 136-150. doi: doi:10.1002/zamm.200900295.

[3]

S. Avdonin, V. Mikhaylov and A. Rybkin, The boundary control approach to the Titchmarsh-Weyl $m$-function. I. The response operator and the $A$-amplitude, Comm. Math. Phys., 275 (2007), 791-803. doi: doi:10.1007/s00220-007-0315-2.

[4]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672. doi: doi:10.1088/0266-5611/20/3/002.

[5]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1-R67. doi: doi:10.1088/0266-5611/23/5/R01.

[6]

M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inv. Ill-Posed Problems, 14 (2006), 29-46. doi: doi:10.1515/156939406776237474.

[7]

B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 3231-3243.

[8]

B. M. Brown and R. Weikard, On inverse problems for finite trees, in "Methods of Spectral Analysis in Mathematical Physics, Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP) 2006," 31-48.

[9]

R. Carlson, Inverse eigenvalue problems on directed graphs, Trans. Amer. Math. Soc., 351 (1999), 4069-4088. doi: doi:10.1090/S0002-9947-99-02175-3.

[10]

P. Exner and P. Šeba, Free quantum motion on a branching graph, Rep. Math. Phys., 28 (1989), 7-26. doi: doi:10.1016/0034-4877(89)90023-2.

[11]

G. Freiling and V. Yurko, Inverse problems for Sturm-Liouville operators on noncompact trees, Results Math., 50 (2007), 195-212. doi: doi:10.1007/s00025-007-0246-4.

[12]

G. Freiling and V. Yurko, Inverse problems for differential operators on trees with general matching conditions, Applicable Analysis, 86 (2007), 653-667. doi: doi:10.1080/00036810701303976.

[13]

N. I. Gerasimenko and B. Pavlov, Scattering problems on noncompact graphs, Teoret. Mat. Fiz., 74 (1988), 345-359; Eng. transl. in Theoret. and Math. Phys., 74 (1988), 230-240.

[14]

N. I. Gerasimenko, Inverse scattering problem on a noncompact graph, Teoret. Mat. Fiz., 75 (1988), 187-200; Eng. transl. in Theoret. and Math. Phys., 75 (1988), 460-470.

[15]

M. Harmer, Hermitian symplectic geometry and extension theory, J. Phys. A, 33 (2000), 9193-9203. doi: doi:10.1088/0305-4470/33/50/305.

[16]

M. Harmer, Inverse scattering on matrices with boundary conditions, J. Phys. A, 38 (2005), 4875-4885. doi: doi:10.1088/0305-4470/38/22/012.

[17]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A, 32 (1999), 595-630. doi: doi:10.1088/0305-4470/32/4/006.

[18]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers, Fortschr. Phys., 48 (2000), 703-716. doi: doi:10.1002/1521-3978(200008)48:8<703::AID-PROP703>3.0.CO;2-O.

[19]

P. Kuchment, "Waves in Periodic and Random Media. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held at Mount Holyoke College, South Hadley, MA, June 22-28, 2002,'' Contemporary Mathematics, 339 (2003), (Providence, RI: American Mathematical Society).

[20]

P. Kuchment, Quantum graphs. I. Some basic structures, Waves in Random Media, 14 (2004), S107-S128. doi: doi:10.1088/0959-7174/14/1/014.

[21]

P. Kurasov and M. Nowaczyk, Geometric properties of quantum graphs and vertex scattering matrices, Opuscula Math., 30 (2010), 295-309.

[22]

P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs, J. Phys. A, 35 (2002), 101-121. doi: doi:10.1088/0305-4470/35/1/309.

[23]

V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21 (2005), 1075-1086. doi: doi:10.1088/0266-5611/21/3/017.

[24]

V. Yurko, On the reconstruction of Sturm-Liouville operators on graphs (Russian), Mat. Zametki, 79 (2006), 619-630; translation in Math. Notes, 79 (2006), 572-582. doi: doi:10.1007/s11006-006-0064-0.

[25]

V. Yurko, Inverse problems for differential operators of arbitrary orders on trees (Russian), Mat. Zametki, 83 (2008), 139-152; translation in Math. Notes, 83 (2008), 125-137. doi: doi:10.1134/S000143460801015X.

show all references

References:
[1]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees, Inverse Problems and Imaging, 2 (2008), 1-21.

[2]

S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings, Zeit. Angew. Math. Mech., 90 (2010), 136-150. doi: doi:10.1002/zamm.200900295.

[3]

S. Avdonin, V. Mikhaylov and A. Rybkin, The boundary control approach to the Titchmarsh-Weyl $m$-function. I. The response operator and the $A$-amplitude, Comm. Math. Phys., 275 (2007), 791-803. doi: doi:10.1007/s00220-007-0315-2.

[4]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method, Inverse Problems, 20 (2004), 647-672. doi: doi:10.1088/0266-5611/20/3/002.

[5]

M. I. Belishev, Recent progress in the boundary control method, Inverse Problems, 23 (2007), R1-R67. doi: doi:10.1088/0266-5611/23/5/R01.

[6]

M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method, J. Inv. Ill-Posed Problems, 14 (2006), 29-46. doi: doi:10.1515/156939406776237474.

[7]

B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 3231-3243.

[8]

B. M. Brown and R. Weikard, On inverse problems for finite trees, in "Methods of Spectral Analysis in Mathematical Physics, Conference on Operator Theory, Analysis and Mathematical Physics (OTAMP) 2006," 31-48.

[9]

R. Carlson, Inverse eigenvalue problems on directed graphs, Trans. Amer. Math. Soc., 351 (1999), 4069-4088. doi: doi:10.1090/S0002-9947-99-02175-3.

[10]

P. Exner and P. Šeba, Free quantum motion on a branching graph, Rep. Math. Phys., 28 (1989), 7-26. doi: doi:10.1016/0034-4877(89)90023-2.

[11]

G. Freiling and V. Yurko, Inverse problems for Sturm-Liouville operators on noncompact trees, Results Math., 50 (2007), 195-212. doi: doi:10.1007/s00025-007-0246-4.

[12]

G. Freiling and V. Yurko, Inverse problems for differential operators on trees with general matching conditions, Applicable Analysis, 86 (2007), 653-667. doi: doi:10.1080/00036810701303976.

[13]

N. I. Gerasimenko and B. Pavlov, Scattering problems on noncompact graphs, Teoret. Mat. Fiz., 74 (1988), 345-359; Eng. transl. in Theoret. and Math. Phys., 74 (1988), 230-240.

[14]

N. I. Gerasimenko, Inverse scattering problem on a noncompact graph, Teoret. Mat. Fiz., 75 (1988), 187-200; Eng. transl. in Theoret. and Math. Phys., 75 (1988), 460-470.

[15]

M. Harmer, Hermitian symplectic geometry and extension theory, J. Phys. A, 33 (2000), 9193-9203. doi: doi:10.1088/0305-4470/33/50/305.

[16]

M. Harmer, Inverse scattering on matrices with boundary conditions, J. Phys. A, 38 (2005), 4875-4885. doi: doi:10.1088/0305-4470/38/22/012.

[17]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires, J. Phys. A, 32 (1999), 595-630. doi: doi:10.1088/0305-4470/32/4/006.

[18]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers, Fortschr. Phys., 48 (2000), 703-716. doi: doi:10.1002/1521-3978(200008)48:8<703::AID-PROP703>3.0.CO;2-O.

[19]

P. Kuchment, "Waves in Periodic and Random Media. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held at Mount Holyoke College, South Hadley, MA, June 22-28, 2002,'' Contemporary Mathematics, 339 (2003), (Providence, RI: American Mathematical Society).

[20]

P. Kuchment, Quantum graphs. I. Some basic structures, Waves in Random Media, 14 (2004), S107-S128. doi: doi:10.1088/0959-7174/14/1/014.

[21]

P. Kurasov and M. Nowaczyk, Geometric properties of quantum graphs and vertex scattering matrices, Opuscula Math., 30 (2010), 295-309.

[22]

P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs, J. Phys. A, 35 (2002), 101-121. doi: doi:10.1088/0305-4470/35/1/309.

[23]

V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems, 21 (2005), 1075-1086. doi: doi:10.1088/0266-5611/21/3/017.

[24]

V. Yurko, On the reconstruction of Sturm-Liouville operators on graphs (Russian), Mat. Zametki, 79 (2006), 619-630; translation in Math. Notes, 79 (2006), 572-582. doi: doi:10.1007/s11006-006-0064-0.

[25]

V. Yurko, Inverse problems for differential operators of arbitrary orders on trees (Russian), Mat. Zametki, 83 (2008), 139-152; translation in Math. Notes, 83 (2008), 125-137. doi: doi:10.1134/S000143460801015X.

[1]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems and Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[2]

James B. Kennedy, Jonathan Rohleder. On the hot spots of quantum graphs. Communications on Pure and Applied Analysis, 2021, 20 (9) : 3029-3063. doi: 10.3934/cpaa.2021095

[3]

Travis G. Draper, Fernando Guevara Vasquez, Justin Cheuk-Lum Tse, Toren E. Wallengren, Kenneth Zheng. Matrix valued inverse problems on graphs with application to mass-spring-damper systems. Networks and Heterogeneous Media, 2020, 15 (1) : 1-28. doi: 10.3934/nhm.2020001

[4]

Laurent Bourgeois, Houssem Haddar. Identification of generalized impedance boundary conditions in inverse scattering problems. Inverse Problems and Imaging, 2010, 4 (1) : 19-38. doi: 10.3934/ipi.2010.4.19

[5]

Frederic Weidling, Thorsten Hohage. Variational source conditions and stability estimates for inverse electromagnetic medium scattering problems. Inverse Problems and Imaging, 2017, 11 (1) : 203-220. doi: 10.3934/ipi.2017010

[6]

De-Han Chen, Daijun Jiang, Irwin Yousept, Jun Zou. Addendum to: "Variational source conditions for inverse Robin and flux problems by partial measurements". Inverse Problems and Imaging, 2022, 16 (2) : 481-481. doi: 10.3934/ipi.2022003

[7]

De-Han Chen, Daijun Jiang, Irwin Yousept, Jun Zou. Variational source conditions for inverse Robin and flux problems by partial measurements. Inverse Problems and Imaging, 2022, 16 (2) : 283-304. doi: 10.3934/ipi.2021050

[8]

Robert Carlson. Dirichlet to Neumann maps for infinite quantum graphs. Networks and Heterogeneous Media, 2012, 7 (3) : 483-501. doi: 10.3934/nhm.2012.7.483

[9]

Constanza Riera, Matthew G. Parker, Pantelimon Stǎnicǎ. Quantum states associated to mixed graphs and their algebraic characterization. Advances in Mathematics of Communications, 2021  doi: 10.3934/amc.2021015

[10]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete and Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[11]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[12]

J. M. Mazón, Julio D. Rossi, J. Toledo. Optimal matching problems with costs given by Finsler distances. Communications on Pure and Applied Analysis, 2015, 14 (1) : 229-244. doi: 10.3934/cpaa.2015.14.229

[13]

Sergio Grillo, Leandro Salomone, Marcela Zuccalli. Explicit solutions of the kinetic and potential matching conditions of the energy shaping method. Journal of Geometric Mechanics, 2021, 13 (4) : 629-646. doi: 10.3934/jgm.2021022

[14]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks and Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[15]

Masaya Maeda, Hironobu Sasaki, Etsuo Segawa, Akito Suzuki, Kanako Suzuki. Scattering and inverse scattering for nonlinear quantum walks. Discrete and Continuous Dynamical Systems, 2018, 38 (7) : 3687-3703. doi: 10.3934/dcds.2018159

[16]

Klaus-Jochen Engel, Marjeta Kramar Fijavž. Waves and diffusion on metric graphs with general vertex conditions. Evolution Equations and Control Theory, 2019, 8 (3) : 633-661. doi: 10.3934/eect.2019030

[17]

Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems and Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551

[18]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete and Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[19]

Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042

[20]

Guanghui Hu, Peijun Li, Xiaodong Liu, Yue Zhao. Inverse source problems in electrodynamics. Inverse Problems and Imaging, 2018, 12 (6) : 1411-1428. doi: 10.3934/ipi.2018059

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]