November  2010, 4(4): 579-598. doi: 10.3934/ipi.2010.4.579

Inverse problems for quantum trees II: Recovering matching conditions for star graphs

1. 

Department of Mathematics and Statistics, University of Alaska, Fairbanks, AK 99775-6660

2. 

Dept. of Mathematics, LTH, Lund Univ., Box 118, 221 00 Lund

3. 

Institute of Mathematics, PAN, ul. Św.Tomasza 30, 31-027 Kraków, Poland

Received  November 2009 Revised  May 2010 Published  September 2010

The inverse problem for the Schrödinger operator on a star graph is investigated. It is proven that such Schrödinger operator, i.e. the graph, the real potential on it and the matching conditions at the central vertex, can be reconstructed from the Titchmarsh-Weyl matrix function associated with the graph boundary. The reconstruction is also unique if the spectral data include not the whole Titchmarsh-Weyl function but its principal block (the matrix reduced by one dimension). The same result holds true if instead of the Titchmarsh-Weyl function the dynamical response operator or just its principal block is known.
Citation: Sergei Avdonin, Pavel Kurasov, Marlena Nowaczyk. Inverse problems for quantum trees II: Recovering matching conditions for star graphs. Inverse Problems & Imaging, 2010, 4 (4) : 579-598. doi: 10.3934/ipi.2010.4.579
References:
[1]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees,, Inverse Problems and Imaging, 2 (2008), 1.   Google Scholar

[2]

S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings,, Zeit. Angew. Math. Mech., 90 (2010), 136.  doi: doi:10.1002/zamm.200900295.  Google Scholar

[3]

S. Avdonin, V. Mikhaylov and A. Rybkin, The boundary control approach to the Titchmarsh-Weyl $m$-function. I. The response operator and the $A$-amplitude,, Comm. Math. Phys., 275 (2007), 791.  doi: doi:10.1007/s00220-007-0315-2.  Google Scholar

[4]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method,, Inverse Problems, 20 (2004), 647.  doi: doi:10.1088/0266-5611/20/3/002.  Google Scholar

[5]

M. I. Belishev, Recent progress in the boundary control method,, Inverse Problems, 23 (2007).  doi: doi:10.1088/0266-5611/23/5/R01.  Google Scholar

[6]

M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method,, J. Inv. Ill-Posed Problems, 14 (2006), 29.  doi: doi:10.1515/156939406776237474.  Google Scholar

[7]

B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 3231.   Google Scholar

[8]

B. M. Brown and R. Weikard, On inverse problems for finite trees,, in, (2006), 31.   Google Scholar

[9]

R. Carlson, Inverse eigenvalue problems on directed graphs,, Trans. Amer. Math. Soc., 351 (1999), 4069.  doi: doi:10.1090/S0002-9947-99-02175-3.  Google Scholar

[10]

P. Exner and P. Šeba, Free quantum motion on a branching graph,, Rep. Math. Phys., 28 (1989), 7.  doi: doi:10.1016/0034-4877(89)90023-2.  Google Scholar

[11]

G. Freiling and V. Yurko, Inverse problems for Sturm-Liouville operators on noncompact trees,, Results Math., 50 (2007), 195.  doi: doi:10.1007/s00025-007-0246-4.  Google Scholar

[12]

G. Freiling and V. Yurko, Inverse problems for differential operators on trees with general matching conditions,, Applicable Analysis, 86 (2007), 653.  doi: doi:10.1080/00036810701303976.  Google Scholar

[13]

N. I. Gerasimenko and B. Pavlov, Scattering problems on noncompact graphs,, Teoret. Mat. Fiz., 74 (1988), 345.   Google Scholar

[14]

N. I. Gerasimenko, Inverse scattering problem on a noncompact graph,, Teoret. Mat. Fiz., 75 (1988), 187.   Google Scholar

[15]

M. Harmer, Hermitian symplectic geometry and extension theory,, J. Phys. A, 33 (2000), 9193.  doi: doi:10.1088/0305-4470/33/50/305.  Google Scholar

[16]

M. Harmer, Inverse scattering on matrices with boundary conditions,, J. Phys. A, 38 (2005), 4875.  doi: doi:10.1088/0305-4470/38/22/012.  Google Scholar

[17]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires,, J. Phys. A, 32 (1999), 595.  doi: doi:10.1088/0305-4470/32/4/006.  Google Scholar

[18]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers,, Fortschr. Phys., 48 (2000), 703.  doi: doi:10.1002/1521-3978(200008)48:8<703::AID-PROP703>3.0.CO;2-O.  Google Scholar

[19]

P. Kuchment, "Waves in Periodic and Random Media. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held at Mount Holyoke College, South Hadley, MA, June 22-28, 2002,'', Contemporary Mathematics, 339 (2003).   Google Scholar

[20]

P. Kuchment, Quantum graphs. I. Some basic structures,, Waves in Random Media, 14 (2004).  doi: doi:10.1088/0959-7174/14/1/014.  Google Scholar

[21]

P. Kurasov and M. Nowaczyk, Geometric properties of quantum graphs and vertex scattering matrices,, Opuscula Math., 30 (2010), 295.   Google Scholar

[22]

P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs,, J. Phys. A, 35 (2002), 101.  doi: doi:10.1088/0305-4470/35/1/309.  Google Scholar

[23]

V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs,, Inverse Problems, 21 (2005), 1075.  doi: doi:10.1088/0266-5611/21/3/017.  Google Scholar

[24]

V. Yurko, On the reconstruction of Sturm-Liouville operators on graphs (Russian),, Mat. Zametki, 79 (2006), 619.  doi: doi:10.1007/s11006-006-0064-0.  Google Scholar

[25]

V. Yurko, Inverse problems for differential operators of arbitrary orders on trees (Russian),, Mat. Zametki, 83 (2008), 139.  doi: doi:10.1134/S000143460801015X.  Google Scholar

show all references

References:
[1]

S. Avdonin and P. Kurasov, Inverse problems for quantum trees,, Inverse Problems and Imaging, 2 (2008), 1.   Google Scholar

[2]

S. Avdonin, G. Leugering and V. Mikhaylov, On an inverse problem for tree-like networks of elastic strings,, Zeit. Angew. Math. Mech., 90 (2010), 136.  doi: doi:10.1002/zamm.200900295.  Google Scholar

[3]

S. Avdonin, V. Mikhaylov and A. Rybkin, The boundary control approach to the Titchmarsh-Weyl $m$-function. I. The response operator and the $A$-amplitude,, Comm. Math. Phys., 275 (2007), 791.  doi: doi:10.1007/s00220-007-0315-2.  Google Scholar

[4]

M. I. Belishev, Boundary spectral inverse problem on a class of graphs (trees) by the BC method,, Inverse Problems, 20 (2004), 647.  doi: doi:10.1088/0266-5611/20/3/002.  Google Scholar

[5]

M. I. Belishev, Recent progress in the boundary control method,, Inverse Problems, 23 (2007).  doi: doi:10.1088/0266-5611/23/5/R01.  Google Scholar

[6]

M. I. Belishev and A. F. Vakulenko, Inverse problems on graphs: Recovering the tree of strings by the BC-method,, J. Inv. Ill-Posed Problems, 14 (2006), 29.  doi: doi:10.1515/156939406776237474.  Google Scholar

[7]

B. M. Brown and R. Weikard, A Borg-Levinson theorem for trees,, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 3231.   Google Scholar

[8]

B. M. Brown and R. Weikard, On inverse problems for finite trees,, in, (2006), 31.   Google Scholar

[9]

R. Carlson, Inverse eigenvalue problems on directed graphs,, Trans. Amer. Math. Soc., 351 (1999), 4069.  doi: doi:10.1090/S0002-9947-99-02175-3.  Google Scholar

[10]

P. Exner and P. Šeba, Free quantum motion on a branching graph,, Rep. Math. Phys., 28 (1989), 7.  doi: doi:10.1016/0034-4877(89)90023-2.  Google Scholar

[11]

G. Freiling and V. Yurko, Inverse problems for Sturm-Liouville operators on noncompact trees,, Results Math., 50 (2007), 195.  doi: doi:10.1007/s00025-007-0246-4.  Google Scholar

[12]

G. Freiling and V. Yurko, Inverse problems for differential operators on trees with general matching conditions,, Applicable Analysis, 86 (2007), 653.  doi: doi:10.1080/00036810701303976.  Google Scholar

[13]

N. I. Gerasimenko and B. Pavlov, Scattering problems on noncompact graphs,, Teoret. Mat. Fiz., 74 (1988), 345.   Google Scholar

[14]

N. I. Gerasimenko, Inverse scattering problem on a noncompact graph,, Teoret. Mat. Fiz., 75 (1988), 187.   Google Scholar

[15]

M. Harmer, Hermitian symplectic geometry and extension theory,, J. Phys. A, 33 (2000), 9193.  doi: doi:10.1088/0305-4470/33/50/305.  Google Scholar

[16]

M. Harmer, Inverse scattering on matrices with boundary conditions,, J. Phys. A, 38 (2005), 4875.  doi: doi:10.1088/0305-4470/38/22/012.  Google Scholar

[17]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires,, J. Phys. A, 32 (1999), 595.  doi: doi:10.1088/0305-4470/32/4/006.  Google Scholar

[18]

V. Kostrykin and R. Schrader, Kirchhoff's rule for quantum wires. II. The inverse problem with possible applications to quantum computers,, Fortschr. Phys., 48 (2000), 703.  doi: doi:10.1002/1521-3978(200008)48:8<703::AID-PROP703>3.0.CO;2-O.  Google Scholar

[19]

P. Kuchment, "Waves in Periodic and Random Media. Proceedings of the AMS-IMS-SIAM Joint Summer Research Conference Held at Mount Holyoke College, South Hadley, MA, June 22-28, 2002,'', Contemporary Mathematics, 339 (2003).   Google Scholar

[20]

P. Kuchment, Quantum graphs. I. Some basic structures,, Waves in Random Media, 14 (2004).  doi: doi:10.1088/0959-7174/14/1/014.  Google Scholar

[21]

P. Kurasov and M. Nowaczyk, Geometric properties of quantum graphs and vertex scattering matrices,, Opuscula Math., 30 (2010), 295.   Google Scholar

[22]

P. Kurasov and F. Stenberg, On the inverse scattering problem on branching graphs,, J. Phys. A, 35 (2002), 101.  doi: doi:10.1088/0305-4470/35/1/309.  Google Scholar

[23]

V. Yurko, Inverse spectral problems for Sturm-Liouville operators on graphs,, Inverse Problems, 21 (2005), 1075.  doi: doi:10.1088/0266-5611/21/3/017.  Google Scholar

[24]

V. Yurko, On the reconstruction of Sturm-Liouville operators on graphs (Russian),, Mat. Zametki, 79 (2006), 619.  doi: doi:10.1007/s11006-006-0064-0.  Google Scholar

[25]

V. Yurko, Inverse problems for differential operators of arbitrary orders on trees (Russian),, Mat. Zametki, 83 (2008), 139.  doi: doi:10.1134/S000143460801015X.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[3]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[4]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[5]

Hyung-Chun Lee. Efficient computations for linear feedback control problems for target velocity matching of Navier-Stokes flows via POD and LSTM-ROM. Electronic Research Archive, , () : -. doi: 10.3934/era.2020128

[6]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[7]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[8]

Pablo Neme, Jorge Oviedo. A note on the lattice structure for matching markets via linear programming. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2021001

[9]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[10]

Gökhan Mutlu. On the quotient quantum graph with respect to the regular representation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020295

[11]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[12]

Xiuli Xu, Xueke Pu. Optimal convergence rates of the magnetohydrodynamic model for quantum plasmas with potential force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 987-1010. doi: 10.3934/dcdsb.2020150

[13]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[14]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[15]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[16]

Pedro Branco. A post-quantum UC-commitment scheme in the global random oracle model from code-based assumptions. Advances in Mathematics of Communications, 2021, 15 (1) : 113-130. doi: 10.3934/amc.2020046

[17]

Shumin Li, Masahiro Yamamoto, Bernadette Miara. A Carleman estimate for the linear shallow shell equation and an inverse source problem. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 367-380. doi: 10.3934/dcds.2009.23.367

[18]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

[19]

Shahede Omidi, Jafar Fathali. Inverse single facility location problem on a tree with balancing on the distance of server to clients. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021017

[20]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (15)

Other articles
by authors

[Back to Top]