• Previous Article
    Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform
  • IPI Home
  • This Issue
  • Next Article
    Inverse problems for quantum trees II: Recovering matching conditions for star graphs
November  2010, 4(4): 599-618. doi: 10.3934/ipi.2010.4.599

The quadratic contribution to the backscattering transform in the rotation invariant case

1. 

Institute of Mathematics of the Romanian Academy, Bucharest, PO Box 1–764, Romania

2. 

Lund University, Box 118, S-22100, Lund, Sweden

Received  December 2008 Published  September 2010

Considerations of the backscattering data for the Schrödinger operator $H_v= -\Delta+ v$ in $\RR^n$, where $n\ge 3$ is odd, give rise to an entire analytic mapping from $C_0^\infty ( \RRn)$ to $C^\infty (\RRn)$, the backscattering transformation. The aim of this paper is to give formulas for $B_2(v, w)$ where $B_2$ is the symmetric bilinear operator that corresponds to the quadratic part of the backscattering transformation and $v$ and $w$ are rotation invariant.
Citation: Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599
References:
[1]

I. Beltiţă and A. Melin, Analysis of the quadratic term in the backscattering transformation,, Math. Scand., 105 (2009), 218.   Google Scholar

[2]

I. Beltiţă and A. Melin, Local smoothing for the backscattering transformation,, Comm. Partial Diff. Equations, 34 (2009), 233.   Google Scholar

[3]

L. Hörmander, "The Analysis of Linear Partial Differential Operators'' (I-IV),, Springer Verlag, (): 1983.   Google Scholar

[4]

A. Melin, Smoothness of higher order terms in backscattering,, in, 1315 (2003), 43.   Google Scholar

[5]

A. Melin, Some transforms in potential scattering in odd dimension,, in, 348 (2004), 103.   Google Scholar

[6]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Diff. Equations, 30 (2005), 67.   Google Scholar

show all references

References:
[1]

I. Beltiţă and A. Melin, Analysis of the quadratic term in the backscattering transformation,, Math. Scand., 105 (2009), 218.   Google Scholar

[2]

I. Beltiţă and A. Melin, Local smoothing for the backscattering transformation,, Comm. Partial Diff. Equations, 34 (2009), 233.   Google Scholar

[3]

L. Hörmander, "The Analysis of Linear Partial Differential Operators'' (I-IV),, Springer Verlag, (): 1983.   Google Scholar

[4]

A. Melin, Smoothness of higher order terms in backscattering,, in, 1315 (2003), 43.   Google Scholar

[5]

A. Melin, Some transforms in potential scattering in odd dimension,, in, 348 (2004), 103.   Google Scholar

[6]

A. Ruiz and A. Vargas, Partial recovery of a potential from backscattering data,, Comm. Partial Diff. Equations, 30 (2005), 67.   Google Scholar

[1]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[2]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[3]

Josselin Garnier, Knut Sølna. Enhanced Backscattering of a partially coherent field from an anisotropic random lossy medium. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1171-1195. doi: 10.3934/dcdsb.2020158

[4]

Bo Tan, Qinglong Zhou. Approximation properties of Lüroth expansions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020389

[5]

Tomáš Oberhuber, Tomáš Dytrych, Kristina D. Launey, Daniel Langr, Jerry P. Draayer. Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1111-1122. doi: 10.3934/dcdss.2020383

[6]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Bilal Al Taki, Khawla Msheik, Jacques Sainte-Marie. On the rigid-lid approximation of shallow water Bingham. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 875-905. doi: 10.3934/dcdsb.2020146

[9]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[10]

Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048

[11]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

[12]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[13]

Baoli Yin, Yang Liu, Hong Li, Zhimin Zhang. Approximation methods for the distributed order calculus using the convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1447-1468. doi: 10.3934/dcdsb.2020168

[14]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[15]

Michiyuki Watanabe. Inverse $N$-body scattering with the time-dependent hartree-fock approximation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021002

[16]

Peter Frolkovič, Karol Mikula, Jooyoung Hahn, Dirk Martin, Branislav Basara. Flux balanced approximation with least-squares gradient for diffusion equation on polyhedral mesh. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 865-879. doi: 10.3934/dcdss.2020350

[17]

Xiaoli Lu, Pengzhan Huang, Yinnian He. Fully discrete finite element approximation of the 2D/3D unsteady incompressible magnetohydrodynamic-Voigt regularization flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 815-845. doi: 10.3934/dcdsb.2020143

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]