-
Previous Article
A local uniqueness theorem for weighted Radon transforms
- IPI Home
- This Issue
-
Next Article
The quadratic contribution to the backscattering transform in the rotation invariant case
Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform
1. | Department of Mathematics, Stockholm University, SE-10691 Stockholm |
References:
[1] |
C. Béslisle, J.-C. Massé and T. Ransford, When is a probability measure determined by infinitely many projections?, Ann. Probab., 25 (1997), 767-786.
doi: doi:10.1214/aop/1024404418. |
[2] |
J. Boman, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, Série I, 315 (1992), 1231-1234. |
[3] |
J. Boman, Microlocal quasianalyticity for distributions and ultradistributions, Publ. Res. Inst. Math. Sci. (Kyoto), 31 (1995), 1079-1095.
doi: doi:10.2977/prims/1195163598. |
[4] |
J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes, C. R. Acad. Sci. Paris, Série I, 347 (2009), 1351-1354. |
[5] |
L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704.
doi: doi:10.1002/cpa.3160240505. |
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators," Vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. |
[7] |
L. Hörmander, Remarks on Holmgren's uniqueness theorem, Ann. Inst. Fourier (Grenoble), 43 (1993), 1223-1251. |
[8] |
D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems-An introduction, in "Hyperfunctions and Theoretical Physics," Lecture Notes in Math., 449 (1975), 121-132. |
[9] |
F. Natterer, "The Mathematics of Computerized Tomography," Wiley&Sons, New York, Brisbane, Toronto, Singapore, 1986. |
[10] |
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction," SIAM, Philadelphia, 2001. |
[11] |
V. Palamodov, "Reconstructive Integral Geometry," Birkhäuser, Basel, Boston, Berlin, 2004. |
show all references
References:
[1] |
C. Béslisle, J.-C. Massé and T. Ransford, When is a probability measure determined by infinitely many projections?, Ann. Probab., 25 (1997), 767-786.
doi: doi:10.1214/aop/1024404418. |
[2] |
J. Boman, A local vanishing theorem for distributions, C. R. Acad. Sci. Paris, Série I, 315 (1992), 1231-1234. |
[3] |
J. Boman, Microlocal quasianalyticity for distributions and ultradistributions, Publ. Res. Inst. Math. Sci. (Kyoto), 31 (1995), 1079-1095.
doi: doi:10.2977/prims/1195163598. |
[4] |
J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes, C. R. Acad. Sci. Paris, Série I, 347 (2009), 1351-1354. |
[5] |
L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients, Comm. Pure Appl. Math., 24 (1971), 671-704.
doi: doi:10.1002/cpa.3160240505. |
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators," Vol. 1, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1983. |
[7] |
L. Hörmander, Remarks on Holmgren's uniqueness theorem, Ann. Inst. Fourier (Grenoble), 43 (1993), 1223-1251. |
[8] |
D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems-An introduction, in "Hyperfunctions and Theoretical Physics," Lecture Notes in Math., 449 (1975), 121-132. |
[9] |
F. Natterer, "The Mathematics of Computerized Tomography," Wiley&Sons, New York, Brisbane, Toronto, Singapore, 1986. |
[10] |
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction," SIAM, Philadelphia, 2001. |
[11] |
V. Palamodov, "Reconstructive Integral Geometry," Birkhäuser, Basel, Boston, Berlin, 2004. |
[1] |
Artem Dudko. Computability of the Julia set. Nonrecurrent critical orbits. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2751-2778. doi: 10.3934/dcds.2014.34.2751 |
[2] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems and Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[3] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete and Continuous Dynamical Systems, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[4] |
Yang Zhang. Artifacts in the inversion of the broken ray transform in the plane. Inverse Problems and Imaging, 2020, 14 (1) : 1-26. doi: 10.3934/ipi.2019061 |
[5] |
Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete and Continuous Dynamical Systems, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471 |
[6] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems and Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
[7] |
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems and Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 |
[8] |
Siamak RabieniaHaratbar. Support theorem for the Light-Ray transform of vector fields on Minkowski spaces. Inverse Problems and Imaging, 2018, 12 (2) : 293-314. doi: 10.3934/ipi.2018013 |
[9] |
François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems and Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713 |
[10] |
Venkateswaran P. Krishnan, Plamen Stefanov. A support theorem for the geodesic ray transform of symmetric tensor fields. Inverse Problems and Imaging, 2009, 3 (3) : 453-464. doi: 10.3934/ipi.2009.3.453 |
[11] |
Mark Hubenthal. The broken ray transform in $n$ dimensions with flat reflecting boundary. Inverse Problems and Imaging, 2015, 9 (1) : 143-161. doi: 10.3934/ipi.2015.9.143 |
[12] |
Jong-Shenq Guo, Hirokazu Ninomiya, Chin-Chin Wu. Existence of a rotating wave pattern in a disk for a wave front interaction model. Communications on Pure and Applied Analysis, 2013, 12 (2) : 1049-1063. doi: 10.3934/cpaa.2013.12.1049 |
[13] |
Aleksander Denisiuk. On range condition of the tensor x-ray transform in $ \mathbb R^n $. Inverse Problems and Imaging, 2020, 14 (3) : 423-435. doi: 10.3934/ipi.2020020 |
[14] |
Hiroshi Fujiwara, Kamran Sadiq, Alexandru Tamasan. Partial inversion of the 2D attenuated $ X $-ray transform with data on an arc. Inverse Problems and Imaging, 2022, 16 (1) : 215-228. doi: 10.3934/ipi.2021047 |
[15] |
Venkateswaran P. Krishnan, Vladimir A. Sharafutdinov. Ray transform on Sobolev spaces of symmetric tensor fields, I: Higher order Reshetnyak formulas. Inverse Problems and Imaging, 2022, 16 (4) : 787-826. doi: 10.3934/ipi.2021076 |
[16] |
Jae Gil Choi, David Skoug. Algebraic structure of the $ L_2 $ analytic Fourier–Feynman transform associated with Gaussian paths on Wiener space. Communications on Pure and Applied Analysis, 2020, 19 (7) : 3829-3842. doi: 10.3934/cpaa.2020169 |
[17] |
Marcelo Disconzi, Daniel Toundykov, Justin T. Webster. Front matter. Evolution Equations and Control Theory, 2016, 5 (4) : i-iii. doi: 10.3934/eect.201604i |
[18] |
Muhammad Arfan, Kamal Shah, Aman Ullah, Soheil Salahshour, Ali Ahmadian, Massimiliano Ferrara. A novel semi-analytical method for solutions of two dimensional fuzzy fractional wave equation using natural transform. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 315-338. doi: 10.3934/dcdss.2021011 |
[19] |
Y. A. Li, P. J. Olver. Convergence of solitary-wave solutions in a perturbed bi-hamiltonian dynamical system ii. complex analytic behavior and convergence to non-analytic solutions. Discrete and Continuous Dynamical Systems, 1998, 4 (1) : 159-191. doi: 10.3934/dcds.1998.4.159 |
[20] |
Venkateswaran P. Krishnan, Ramesh Manna, Suman Kumar Sahoo, Vladimir A. Sharafutdinov. Momentum ray transforms. Inverse Problems and Imaging, 2019, 13 (3) : 679-701. doi: 10.3934/ipi.2019031 |
2021 Impact Factor: 1.483
Tools
Metrics
Other articles
by authors
[Back to Top]