-
Previous Article
A local uniqueness theorem for weighted Radon transforms
- IPI Home
- This Issue
-
Next Article
The quadratic contribution to the backscattering transform in the rotation invariant case
Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform
1. | Department of Mathematics, Stockholm University, SE-10691 Stockholm |
References:
[1] |
C. Béslisle, J.-C. Massé and T. Ransford, When is a probability measure determined by infinitely many projections?,, Ann. Probab., 25 (1997), 767.
doi: doi:10.1214/aop/1024404418. |
[2] |
J. Boman, A local vanishing theorem for distributions,, C. R. Acad. Sci. Paris, 315 (1992), 1231.
|
[3] |
J. Boman, Microlocal quasianalyticity for distributions and ultradistributions,, Publ. Res. Inst. Math. Sci. (Kyoto), 31 (1995), 1079.
doi: doi:10.2977/prims/1195163598. |
[4] |
J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes,, C. R. Acad. Sci. Paris, 347 (2009), 1351.
|
[5] |
L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients,, Comm. Pure Appl. Math., 24 (1971), 671.
doi: doi:10.1002/cpa.3160240505. |
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators," Vol. 1,, Springer-Verlag, (1983).
|
[7] |
L. Hörmander, Remarks on Holmgren's uniqueness theorem,, Ann. Inst. Fourier (Grenoble), 43 (1993), 1223.
|
[8] |
D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems-An introduction,, in, 449 (1975), 121.
|
[9] |
F. Natterer, "The Mathematics of Computerized Tomography,", Wiley&Sons, (1986).
|
[10] |
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001).
|
[11] |
V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).
|
show all references
References:
[1] |
C. Béslisle, J.-C. Massé and T. Ransford, When is a probability measure determined by infinitely many projections?,, Ann. Probab., 25 (1997), 767.
doi: doi:10.1214/aop/1024404418. |
[2] |
J. Boman, A local vanishing theorem for distributions,, C. R. Acad. Sci. Paris, 315 (1992), 1231.
|
[3] |
J. Boman, Microlocal quasianalyticity for distributions and ultradistributions,, Publ. Res. Inst. Math. Sci. (Kyoto), 31 (1995), 1079.
doi: doi:10.2977/prims/1195163598. |
[4] |
J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes,, C. R. Acad. Sci. Paris, 347 (2009), 1351.
|
[5] |
L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients,, Comm. Pure Appl. Math., 24 (1971), 671.
doi: doi:10.1002/cpa.3160240505. |
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators," Vol. 1,, Springer-Verlag, (1983).
|
[7] |
L. Hörmander, Remarks on Holmgren's uniqueness theorem,, Ann. Inst. Fourier (Grenoble), 43 (1993), 1223.
|
[8] |
D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems-An introduction,, in, 449 (1975), 121.
|
[9] |
F. Natterer, "The Mathematics of Computerized Tomography,", Wiley&Sons, (1986).
|
[10] |
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001).
|
[11] |
V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).
|
[1] |
Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240 |
[2] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[3] |
Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071 |
[4] |
Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102 |
[5] |
Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047 |
[6] |
Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571 |
[7] |
Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364 |
[8] |
Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021015 |
[9] |
Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020164 |
[10] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[11] |
Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020162 |
[12] |
Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070 |
[13] |
Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045 |
[14] |
Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002 |
[15] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[16] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[17] |
Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273 |
[18] |
Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270 |
[19] |
Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399 |
[20] |
Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]