November  2010, 4(4): 619-630. doi: 10.3934/ipi.2010.4.619

Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform

1. 

Department of Mathematics, Stockholm University, SE-10691 Stockholm

Received  March 2009 Published  September 2010

Using a vanishing theorem for microlocally real analytic distributions and a theorem on flatness of a distribution vanishing on infinitely many hyperplanes we give a new proof of an injectivity theorem of Bélisle, Massé, and Ransford for the ray transform on $\R^n$. By means of an example we show that this result is sharp. An extension is given where real analyticity is replaced by quasianalyticity.
Citation: Jan Boman. Unique continuation of microlocally analytic distributions and injectivity theorems for the ray transform. Inverse Problems & Imaging, 2010, 4 (4) : 619-630. doi: 10.3934/ipi.2010.4.619
References:
[1]

C. Béslisle, J.-C. Massé and T. Ransford, When is a probability measure determined by infinitely many projections?,, Ann. Probab., 25 (1997), 767.  doi: doi:10.1214/aop/1024404418.  Google Scholar

[2]

J. Boman, A local vanishing theorem for distributions,, C. R. Acad. Sci. Paris, 315 (1992), 1231.   Google Scholar

[3]

J. Boman, Microlocal quasianalyticity for distributions and ultradistributions,, Publ. Res. Inst. Math. Sci. (Kyoto), 31 (1995), 1079.  doi: doi:10.2977/prims/1195163598.  Google Scholar

[4]

J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes,, C. R. Acad. Sci. Paris, 347 (2009), 1351.   Google Scholar

[5]

L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients,, Comm. Pure Appl. Math., 24 (1971), 671.  doi: doi:10.1002/cpa.3160240505.  Google Scholar

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators," Vol. 1,, Springer-Verlag, (1983).   Google Scholar

[7]

L. Hörmander, Remarks on Holmgren's uniqueness theorem,, Ann. Inst. Fourier (Grenoble), 43 (1993), 1223.   Google Scholar

[8]

D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems-An introduction,, in, 449 (1975), 121.   Google Scholar

[9]

F. Natterer, "The Mathematics of Computerized Tomography,", Wiley&Sons, (1986).   Google Scholar

[10]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001).   Google Scholar

[11]

V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).   Google Scholar

show all references

References:
[1]

C. Béslisle, J.-C. Massé and T. Ransford, When is a probability measure determined by infinitely many projections?,, Ann. Probab., 25 (1997), 767.  doi: doi:10.1214/aop/1024404418.  Google Scholar

[2]

J. Boman, A local vanishing theorem for distributions,, C. R. Acad. Sci. Paris, 315 (1992), 1231.   Google Scholar

[3]

J. Boman, Microlocal quasianalyticity for distributions and ultradistributions,, Publ. Res. Inst. Math. Sci. (Kyoto), 31 (1995), 1079.  doi: doi:10.2977/prims/1195163598.  Google Scholar

[4]

J. Boman, Flatness of distributions vanishing on infinitely many hyperplanes,, C. R. Acad. Sci. Paris, 347 (2009), 1351.   Google Scholar

[5]

L. Hörmander, Uniqueness theorems and wave front sets for solutions of linear differential equations with analytic coefficients,, Comm. Pure Appl. Math., 24 (1971), 671.  doi: doi:10.1002/cpa.3160240505.  Google Scholar

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators," Vol. 1,, Springer-Verlag, (1983).   Google Scholar

[7]

L. Hörmander, Remarks on Holmgren's uniqueness theorem,, Ann. Inst. Fourier (Grenoble), 43 (1993), 1223.   Google Scholar

[8]

D. Iagolnitzer, Appendix: Microlocal essential support of a distribution and decomposition theorems-An introduction,, in, 449 (1975), 121.   Google Scholar

[9]

F. Natterer, "The Mathematics of Computerized Tomography,", Wiley&Sons, (1986).   Google Scholar

[10]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001).   Google Scholar

[11]

V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).   Google Scholar

[1]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[2]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[3]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[4]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[5]

Jong-Shenq Guo, Ken-Ichi Nakamura, Toshiko Ogiwara, Chang-Hong Wu. The sign of traveling wave speed in bistable dynamics. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3451-3466. doi: 10.3934/dcds.2020047

[6]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[7]

Marcello D'Abbicco, Giovanni Girardi, Giséle Ruiz Goldstein, Jerome A. Goldstein, Silvia Romanelli. Equipartition of energy for nonautonomous damped wave equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 597-613. doi: 10.3934/dcdss.2020364

[8]

Biyue Chen, Chunxiang Zhao, Chengkui Zhong. The global attractor for the wave equation with nonlocal strong damping. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021015

[9]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[10]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[11]

Ali Mahmoodirad, Harish Garg, Sadegh Niroomand. Solving fuzzy linear fractional set covering problem by a goal programming based solution approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020162

[12]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[13]

Darko Dimitrov, Hosam Abdo. Tight independent set neighborhood union condition for fractional critical deleted graphs and ID deleted graphs. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 711-721. doi: 10.3934/dcdss.2019045

[14]

Jingjing Wang, Zaiyun Peng, Zhi Lin, Daqiong Zhou. On the stability of solutions for the generalized vector quasi-equilibrium problems via free-disposal set. Journal of Industrial & Management Optimization, 2021, 17 (2) : 869-887. doi: 10.3934/jimo.2020002

[15]

Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347

[16]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[17]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[18]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[19]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[20]

Jianli Xiang, Guozheng Yan. The uniqueness of the inverse elastic wave scattering problem based on the mixed reciprocity relation. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021004

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]