\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A local uniqueness theorem for weighted Radon transforms

Abstract / Introduction Related Papers Cited by
  • We consider a weighted Radon transform in the plane, $R_m(\xi, \eta) = \int_{\R} f(x, \xi x + \eta) m(x,\xi,\eta) dx$, where $m(x,\xi,\eta)$ is a smooth, positive function. Using an extension of an argument of Strichartz we prove a local injectivity theorem for $R_m$ for essentially the same class of $m(x,\xi,\eta)$ that was considered by Gindikin in his article in this issue.
    Mathematics Subject Classification: 44A12.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of $A$-analytic functions, Siberian Adv. Math., 8 (1998), 1-20.

    [2]

    G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.doi: doi:10.1088/0266-5611/20/2/006.

    [3]

    J. Boman and J.-O. Strömberg, Novikov's inversion formula for the attenuated Radon transform-A new approach, J. Geom. Anal., 14 (2004), 185-198.

    [4]

    S. GindikinA remark on the weighted Radon transform on the plane, Inverse Probl. Imaging, in this issue.

    [5]

    F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.doi: doi:10.1088/0266-5611/17/1/309.

    [6]

    R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.doi: doi:10.1007/BF02384507.

    [7]

    V. Palamodov, "Reconstructive Integral Geometry," Birkhäuser, Basel, Boston, Berlin, 2004.

    [8]

    R. S. Strichartz, Radon inversion-variations on a theme, Amer. Math. Monthly, 89 (1982), 377-384, 420-423.doi: doi:10.2307/2321649.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(129) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return