November  2010, 4(4): 631-637. doi: 10.3934/ipi.2010.4.631

A local uniqueness theorem for weighted Radon transforms

1. 

Department of Mathematics, Stockholm University, SE-10691 Stockholm

Received  July 2009 Revised  November 2009 Published  November 2009

We consider a weighted Radon transform in the plane, $R_m(\xi, \eta) = \int_{\R} f(x, \xi x + \eta) m(x,\xi,\eta) dx$, where $m(x,\xi,\eta)$ is a smooth, positive function. Using an extension of an argument of Strichartz we prove a local injectivity theorem for $R_m$ for essentially the same class of $m(x,\xi,\eta)$ that was considered by Gindikin in his article in this issue.
Citation: Jan Boman. A local uniqueness theorem for weighted Radon transforms. Inverse Problems & Imaging, 2010, 4 (4) : 631-637. doi: 10.3934/ipi.2010.4.631
References:
[1]

E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of $A$-analytic functions,, Siberian Adv. Math., 8 (1998), 1.

[2]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: doi:10.1088/0266-5611/20/2/006.

[3]

J. Boman and J.-O. Strömberg, Novikov's inversion formula for the attenuated Radon transform-A new approach,, J. Geom. Anal., 14 (2004), 185.

[4]

S. Gindikin, A remark on the weighted Radon transform on the plane,, Inverse Probl. Imaging, ().

[5]

F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113. doi: doi:10.1088/0266-5611/17/1/309.

[6]

R. G. Novikov, An inversion formula for the attenuated X-ray transform,, Ark. Mat., 40 (2002), 145. doi: doi:10.1007/BF02384507.

[7]

V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).

[8]

R. S. Strichartz, Radon inversion-variations on a theme,, Amer. Math. Monthly, 89 (1982), 377. doi: doi:10.2307/2321649.

show all references

References:
[1]

E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of $A$-analytic functions,, Siberian Adv. Math., 8 (1998), 1.

[2]

G. Bal, On the attenuated Radon transform with full and partial measurements,, Inverse Problems, 20 (2004), 399. doi: doi:10.1088/0266-5611/20/2/006.

[3]

J. Boman and J.-O. Strömberg, Novikov's inversion formula for the attenuated Radon transform-A new approach,, J. Geom. Anal., 14 (2004), 185.

[4]

S. Gindikin, A remark on the weighted Radon transform on the plane,, Inverse Probl. Imaging, ().

[5]

F. Natterer, Inversion of the attenuated Radon transform,, Inverse Problems, 17 (2001), 113. doi: doi:10.1088/0266-5611/17/1/309.

[6]

R. G. Novikov, An inversion formula for the attenuated X-ray transform,, Ark. Mat., 40 (2002), 145. doi: doi:10.1007/BF02384507.

[7]

V. Palamodov, "Reconstructive Integral Geometry,", Birkhäuser, (2004).

[8]

R. S. Strichartz, Radon inversion-variations on a theme,, Amer. Math. Monthly, 89 (1982), 377. doi: doi:10.2307/2321649.

[1]

Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649

[2]

Michael Krause, Jan Marcel Hausherr, Walter Krenkel. Computing the fibre orientation from Radon data using local Radon transform. Inverse Problems & Imaging, 2011, 5 (4) : 879-891. doi: 10.3934/ipi.2011.5.879

[3]

Sunghwan Moon. Inversion of the spherical Radon transform on spheres through the origin using the regular Radon transform. Communications on Pure & Applied Analysis, 2016, 15 (3) : 1029-1039. doi: 10.3934/cpaa.2016.15.1029

[4]

Ali Gholami, Mauricio D. Sacchi. Time-invariant radon transform by generalized Fourier slice theorem. Inverse Problems & Imaging, 2017, 11 (3) : 501-519. doi: 10.3934/ipi.2017023

[5]

Hans Rullgård, Eric Todd Quinto. Local Sobolev estimates of a function by means of its Radon transform. Inverse Problems & Imaging, 2010, 4 (4) : 721-734. doi: 10.3934/ipi.2010.4.721

[6]

C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457

[7]

Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems & Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341

[8]

Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111

[9]

Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006

[10]

Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325

[11]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[12]

Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177

[13]

Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27

[14]

Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243

[15]

Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801

[16]

Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373

[17]

Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039

[18]

Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471

[19]

Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599

[20]

Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009

2017 Impact Factor: 1.465

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]