Citation: |
[1] |
E. V. Arbuzov, A. L. Bukhgeim and S. G. Kazantsev, Two-dimensional tomography problems and the theory of $A$-analytic functions, Siberian Adv. Math., 8 (1998), 1-20. |
[2] |
G. Bal, On the attenuated Radon transform with full and partial measurements, Inverse Problems, 20 (2004), 399-418.doi: doi:10.1088/0266-5611/20/2/006. |
[3] |
J. Boman and J.-O. Strömberg, Novikov's inversion formula for the attenuated Radon transform-A new approach, J. Geom. Anal., 14 (2004), 185-198. |
[4] |
S. Gindikin, A remark on the weighted Radon transform on the plane, Inverse Probl. Imaging, in this issue. |
[5] |
F. Natterer, Inversion of the attenuated Radon transform, Inverse Problems, 17 (2001), 113-119.doi: doi:10.1088/0266-5611/17/1/309. |
[6] |
R. G. Novikov, An inversion formula for the attenuated X-ray transform, Ark. Mat., 40 (2002), 145-167.doi: doi:10.1007/BF02384507. |
[7] |
V. Palamodov, "Reconstructive Integral Geometry," Birkhäuser, Basel, Boston, Berlin, 2004. |
[8] |
R. S. Strichartz, Radon inversion-variations on a theme, Amer. Math. Monthly, 89 (1982), 377-384, 420-423.doi: doi:10.2307/2321649. |