-
Previous Article
A remark on the weighted Radon transform on the plane
- IPI Home
- This Issue
-
Next Article
A local uniqueness theorem for weighted Radon transforms
Special functions
1. | Department of Mathematics, Temple University, Philadelphia, PA 19122, United States |
References:
[1] |
L. Ehrenpreis, "Fourier Analysis in Several Complex Variables,", Wiley & Sons, (1970).
|
[2] |
L. Ehrenpreis, "The Universality of the Radon Transform,", Oxford University Press, (2003).
doi: doi:10.1093/acprof:oso/9780198509783.001.0001. |
[3] |
L. Ehrenpreis, Hypergeometric functions,, in, I (1988), 85.
|
[4] |
H. Farkas and I. Kra, "Riemann Surfaces,", Springer-Verlag, (1992).
|
[5] |
E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics,", Cambridge University Press, (1931).
|
[6] |
E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature,", Longman, (1986).
|
[7] |
W. Miller, Jr., "Symmetry and Separation of Variables,", Addison-Wesley Publ. Co., (1977).
|
[8] |
N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions,", Kluwer Acad. Publ., (1991).
|
show all references
References:
[1] |
L. Ehrenpreis, "Fourier Analysis in Several Complex Variables,", Wiley & Sons, (1970).
|
[2] |
L. Ehrenpreis, "The Universality of the Radon Transform,", Oxford University Press, (2003).
doi: doi:10.1093/acprof:oso/9780198509783.001.0001. |
[3] |
L. Ehrenpreis, Hypergeometric functions,, in, I (1988), 85.
|
[4] |
H. Farkas and I. Kra, "Riemann Surfaces,", Springer-Verlag, (1992).
|
[5] |
E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics,", Cambridge University Press, (1931).
|
[6] |
E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature,", Longman, (1986).
|
[7] |
W. Miller, Jr., "Symmetry and Separation of Variables,", Addison-Wesley Publ. Co., (1977).
|
[8] |
N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions,", Kluwer Acad. Publ., (1991).
|
[1] |
Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435 |
[2] |
Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026 |
[3] |
Peter E. Kloeden, Yuan Lou. Preface for the special issue "20 years of DCDS-B". Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : i-ii. doi: 10.3934/dcdsb.2020372 |
[4] |
Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020401 |
[5] |
Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144 |
[6] |
Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069 |
[7] |
Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314 |
[8] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[9] |
Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098 |
[10] |
Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020 doi: 10.3934/jcd.2021006 |
[11] |
Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020378 |
[12] |
Chiun-Chuan Chen, Yuan Lou, Hirokazu Ninomiya, Peter Polacik, Xuefeng Wang. Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : ⅰ-ⅱ. doi: 10.3934/dcds.2020171 |
[13] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
[14] |
Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020117 |
[15] |
Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015 |
[16] |
Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020106 |
[17] |
Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092 |
[18] |
Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331 |
[19] |
Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020 doi: 10.3934/amc.2020125 |
[20] |
Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]