November  2010, 4(4): 639-647. doi: 10.3934/ipi.2010.4.639

Special functions

1. 

Department of Mathematics, Temple University, Philadelphia, PA 19122, United States

Received  March 2009 Published  September 2010

Special functions are functions that show up in several contexts. The most classical special functions are the monomials and the exponential functions. On the next level we find the hypergeometric functions, which appear in such varied contexts as partial differential equations, number theory, and group representations. The standard hypergeometric functions have power series which satisfy 2 term recursion relations. This leads to the usual expressions for the power series coefficients as quotionts of rational and factorial-like expressions. We have developed a "hierarchy" of special functions which satisfy higher order recursion relations. They generalize the classical Mathieu and Lamé functions. These classical functions satisfy 3 term recursion relations and our theory produces "Lamé - like" functions which satisfy recursions of any order.
Citation: Leon Ehrenpreis. Special functions. Inverse Problems & Imaging, 2010, 4 (4) : 639-647. doi: 10.3934/ipi.2010.4.639
References:
[1]

L. Ehrenpreis, "Fourier Analysis in Several Complex Variables,", Wiley & Sons, (1970).   Google Scholar

[2]

L. Ehrenpreis, "The Universality of the Radon Transform,", Oxford University Press, (2003).  doi: doi:10.1093/acprof:oso/9780198509783.001.0001.  Google Scholar

[3]

L. Ehrenpreis, Hypergeometric functions,, in, I (1988), 85.   Google Scholar

[4]

H. Farkas and I. Kra, "Riemann Surfaces,", Springer-Verlag, (1992).   Google Scholar

[5]

E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics,", Cambridge University Press, (1931).   Google Scholar

[6]

E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature,", Longman, (1986).   Google Scholar

[7]

W. Miller, Jr., "Symmetry and Separation of Variables,", Addison-Wesley Publ. Co., (1977).   Google Scholar

[8]

N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions,", Kluwer Acad. Publ., (1991).   Google Scholar

show all references

References:
[1]

L. Ehrenpreis, "Fourier Analysis in Several Complex Variables,", Wiley & Sons, (1970).   Google Scholar

[2]

L. Ehrenpreis, "The Universality of the Radon Transform,", Oxford University Press, (2003).  doi: doi:10.1093/acprof:oso/9780198509783.001.0001.  Google Scholar

[3]

L. Ehrenpreis, Hypergeometric functions,, in, I (1988), 85.   Google Scholar

[4]

H. Farkas and I. Kra, "Riemann Surfaces,", Springer-Verlag, (1992).   Google Scholar

[5]

E. W. Hobson, "The Theory of Spherical and Ellipsoidal Harmonics,", Cambridge University Press, (1931).   Google Scholar

[6]

E. G. Kalnins, "Separation of Variables for Riemannian Spaces of Constant Curvature,", Longman, (1986).   Google Scholar

[7]

W. Miller, Jr., "Symmetry and Separation of Variables,", Addison-Wesley Publ. Co., (1977).   Google Scholar

[8]

N. Ja. Vilenkin and A. U. Klimyk, "Representations of Lie Groups and Special Functions,", Kluwer Acad. Publ., (1991).   Google Scholar

[1]

Denis Serre. Non-linear electromagnetism and special relativity. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 435-454. doi: 10.3934/dcds.2009.23.435

[2]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[3]

Peter E. Kloeden, Yuan Lou. Preface for the special issue "20 years of DCDS-B". Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : i-ii. doi: 10.3934/dcdsb.2020372

[4]

Michel Chipot, Mingmin Zhang. On some model problem for the propagation of interacting species in a special environment. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020401

[5]

Xianwei Chen, Xiangling Fu, Zhujun Jing. Chaos control in a special pendulum system for ultra-subharmonic resonance. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 847-860. doi: 10.3934/dcdsb.2020144

[6]

Bimal Mandal, Aditi Kar Gangopadhyay. A note on generalization of bent boolean functions. Advances in Mathematics of Communications, 2021, 15 (2) : 329-346. doi: 10.3934/amc.2020069

[7]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[8]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[9]

Xinpeng Wang, Bingo Wing-Kuen Ling, Wei-Chao Kuang, Zhijing Yang. Orthogonal intrinsic mode functions via optimization approach. Journal of Industrial & Management Optimization, 2021, 17 (1) : 51-66. doi: 10.3934/jimo.2019098

[10]

Lars Grüne. Computing Lyapunov functions using deep neural networks. Journal of Computational Dynamics, 2020  doi: 10.3934/jcd.2021006

[11]

Peter Giesl, Sigurdur Hafstein. System specific triangulations for the construction of CPA Lyapunov functions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020378

[12]

Chiun-Chuan Chen, Yuan Lou, Hirokazu Ninomiya, Peter Polacik, Xuefeng Wang. Preface: DCDS-A special issue to honor Wei-Ming Ni's 70th birthday. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : ⅰ-ⅱ. doi: 10.3934/dcds.2020171

[13]

Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007

[14]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[15]

Djamel Aaid, Amel Noui, Özen Özer. Piecewise quadratic bounding functions for finding real roots of polynomials. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 63-73. doi: 10.3934/naco.2020015

[16]

Tahir Aliyev Azeroğlu, Bülent Nafi Örnek, Timur Düzenli. Some results on the behaviour of transfer functions at the right half plane. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020106

[17]

Meenakshi Rana, Shruti Sharma. Combinatorics of some fifth and sixth order mock theta functions. Electronic Research Archive, 2021, 29 (1) : 1803-1818. doi: 10.3934/era.2020092

[18]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[19]

Kalikinkar Mandal, Guang Gong. On ideal $ t $-tuple distribution of orthogonal functions in filtering de bruijn generators. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020125

[20]

Tomasz Szostok. Inequalities of Hermite-Hadamard type for higher order convex functions, revisited. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020296

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (34)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]