November  2010, 4(4): 649-653. doi: 10.3934/ipi.2010.4.649

A remark on the weighted Radon transform on the plane

1. 

Departm. of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, United States

Received  January 2009 Revised  May 2010 Published  September 2010

We consider a class of weights on the plane for which the weighted Radon transform admits an inversion formula similar to the classical one. These transforms are naturally dual to the attenuated Radon.
Citation: Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649
References:
[1]

R. G. Novikov, An inversion formula for the attenuated X-ray transform,, Ark. Mat., 40 (2002), 145.  doi: doi:10.1007/BF02384507.  Google Scholar

[2]

I. M. Gelfand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves,, Funct. Anal. Appl., 13 (1980), 87.  doi: doi:10.1007/BF01077241.  Google Scholar

show all references

References:
[1]

R. G. Novikov, An inversion formula for the attenuated X-ray transform,, Ark. Mat., 40 (2002), 145.  doi: doi:10.1007/BF02384507.  Google Scholar

[2]

I. M. Gelfand, S. G. Gindikin and Z. Ya. Shapiro, A local problem of integral geometry in a space of curves,, Funct. Anal. Appl., 13 (1980), 87.  doi: doi:10.1007/BF01077241.  Google Scholar

[1]

Qing-Hu Hou, Yarong Wei. Telescoping method, summation formulas, and inversion pairs. Electronic Research Archive, , () : -. doi: 10.3934/era.2021007

[2]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[3]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[4]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (41)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]