November  2010, 4(4): 655-664. doi: 10.3934/ipi.2010.4.655

The Gauss-Bonnet-Grotemeyer Theorem in space forms

1. 

Department of Mathematics & Statistics, University of New Hampshire, Durham, NH 03824, United States

2. 

Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, China

Received  January 2009 Revised  July 2009 Published  September 2010

In 1963, K.P.~Grotemeyer proved an interesting variant of the Gauss-Bonnet Theorem. Let $M$ be an oriented closed surface in the Euclidean space $\mathbb R^3$ with Euler characteristic $\chi(M)$, Gauss curvature $G$ and unit normal vector field $\vec n$. Grotemeyer's identity replaces the Gauss-Bonnet integrand $G$ by the normal moment $ ( \vec a \cdot \vec n )^2G$, where $a$ is a fixed unit vector: $ \int_M(\vec a\cdot \vec n)^2 Gdv=\frac{2 \pi}{3}\chi(M) $. We generalize Grotemeyer's result to oriented closed even-dimensional hypersurfaces of dimension $n$ in an $(n+1)$-dimensional space form $N^{n+1}(k)$.
Citation: Eric L. Grinberg, Haizhong Li. The Gauss-Bonnet-Grotemeyer Theorem in space forms. Inverse Problems & Imaging, 2010, 4 (4) : 655-664. doi: 10.3934/ipi.2010.4.655
References:
[1]

J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant $r$-mean curvature,, Ann. Global Anal. Geom., 15 (1997), 277.  doi: doi:10.1023/A:1006514303828.  Google Scholar

[2]

I. Bivens, Integral formulas and hyperspheres in a simply connected space form,, Proc. Amer. Math. Soc., 88 (1983), 113.   Google Scholar

[3]

B.-Y. Chen, On an integral formula of Gauss-Bonnet-Grotemeyer,, Proc. Amer. Math. Soc., 28 (1971), 208.   Google Scholar

[4]

S. Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature,, Math. Ann., 225 (1977), 195.  doi: doi:10.1007/BF01425237.  Google Scholar

[5]

S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds,, Ann. of Math. (2), 45 (1944), 747.  doi: doi:10.2307/1969302.  Google Scholar

[6]

S. S. Chern, On the curvatura integra in a Riemannian manifold,, Ann. of Math. (2), 46 (1945), 674.  doi: doi:10.2307/1969203.  Google Scholar

[7]

K. P. Grotemeyer, Über das Normalenbündel differenzierbarer mannigfaltigkeiten,, Ann. Acad. Sci. Fenn., (1963), 1.   Google Scholar

[8]

H. Li, Hypersurfaces with constant scalar curvature in space forms,, Math. Ann., 305 (1996), 665.  doi: doi:10.1007/BF01444243.  Google Scholar

[9]

H. Li, Global rigidity theorems of hypersurfaces,, Ark. Math., 35 (1997), 327.  doi: doi:10.1007/BF02559973.  Google Scholar

[10]

R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms,, J. Diff. Geom., 8 (1973), 465.   Google Scholar

[11]

H. Rosenberg, Hypersurfaces of constant curvature in space forms,, Bull. Sci. Math., 117 (1993), 211.   Google Scholar

[12]

G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces,, Trans. Amer. Math. Soc., 358 (2006), 1105.  doi: doi:10.1090/S0002-9947-05-03828-6.  Google Scholar

[13]

K. Voss, Einige differentialgeometrische kongruenzsätze für geschlossene flächen und hyperflächen,, Math. Ann., 131 (1956), 180.   Google Scholar

show all references

References:
[1]

J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant $r$-mean curvature,, Ann. Global Anal. Geom., 15 (1997), 277.  doi: doi:10.1023/A:1006514303828.  Google Scholar

[2]

I. Bivens, Integral formulas and hyperspheres in a simply connected space form,, Proc. Amer. Math. Soc., 88 (1983), 113.   Google Scholar

[3]

B.-Y. Chen, On an integral formula of Gauss-Bonnet-Grotemeyer,, Proc. Amer. Math. Soc., 28 (1971), 208.   Google Scholar

[4]

S. Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature,, Math. Ann., 225 (1977), 195.  doi: doi:10.1007/BF01425237.  Google Scholar

[5]

S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds,, Ann. of Math. (2), 45 (1944), 747.  doi: doi:10.2307/1969302.  Google Scholar

[6]

S. S. Chern, On the curvatura integra in a Riemannian manifold,, Ann. of Math. (2), 46 (1945), 674.  doi: doi:10.2307/1969203.  Google Scholar

[7]

K. P. Grotemeyer, Über das Normalenbündel differenzierbarer mannigfaltigkeiten,, Ann. Acad. Sci. Fenn., (1963), 1.   Google Scholar

[8]

H. Li, Hypersurfaces with constant scalar curvature in space forms,, Math. Ann., 305 (1996), 665.  doi: doi:10.1007/BF01444243.  Google Scholar

[9]

H. Li, Global rigidity theorems of hypersurfaces,, Ark. Math., 35 (1997), 327.  doi: doi:10.1007/BF02559973.  Google Scholar

[10]

R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms,, J. Diff. Geom., 8 (1973), 465.   Google Scholar

[11]

H. Rosenberg, Hypersurfaces of constant curvature in space forms,, Bull. Sci. Math., 117 (1993), 211.   Google Scholar

[12]

G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces,, Trans. Amer. Math. Soc., 358 (2006), 1105.  doi: doi:10.1090/S0002-9947-05-03828-6.  Google Scholar

[13]

K. Voss, Einige differentialgeometrische kongruenzsätze für geschlossene flächen und hyperflächen,, Math. Ann., 131 (1956), 180.   Google Scholar

[1]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[2]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[3]

Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125

[4]

Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389

[5]

Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020395

[6]

Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385

[7]

Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390

[8]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]