-
Previous Article
Synthetic focusing in ultrasound modulated tomography
- IPI Home
- This Issue
-
Next Article
A remark on the weighted Radon transform on the plane
The Gauss-Bonnet-Grotemeyer Theorem in space forms
1. | Department of Mathematics & Statistics, University of New Hampshire, Durham, NH 03824, United States |
2. | Department of Mathematical Sciences, Tsinghua University, 100084, Beijing, China |
References:
[1] |
J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant $r$-mean curvature,, Ann. Global Anal. Geom., 15 (1997), 277.
doi: doi:10.1023/A:1006514303828. |
[2] |
I. Bivens, Integral formulas and hyperspheres in a simply connected space form,, Proc. Amer. Math. Soc., 88 (1983), 113.
|
[3] |
B.-Y. Chen, On an integral formula of Gauss-Bonnet-Grotemeyer,, Proc. Amer. Math. Soc., 28 (1971), 208.
|
[4] |
S. Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature,, Math. Ann., 225 (1977), 195.
doi: doi:10.1007/BF01425237. |
[5] |
S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds,, Ann. of Math. (2), 45 (1944), 747.
doi: doi:10.2307/1969302. |
[6] |
S. S. Chern, On the curvatura integra in a Riemannian manifold,, Ann. of Math. (2), 46 (1945), 674.
doi: doi:10.2307/1969203. |
[7] |
K. P. Grotemeyer, Über das Normalenbündel differenzierbarer mannigfaltigkeiten,, Ann. Acad. Sci. Fenn., (1963), 1. Google Scholar |
[8] |
H. Li, Hypersurfaces with constant scalar curvature in space forms,, Math. Ann., 305 (1996), 665.
doi: doi:10.1007/BF01444243. |
[9] |
H. Li, Global rigidity theorems of hypersurfaces,, Ark. Math., 35 (1997), 327.
doi: doi:10.1007/BF02559973. |
[10] |
R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms,, J. Diff. Geom., 8 (1973), 465.
|
[11] |
H. Rosenberg, Hypersurfaces of constant curvature in space forms,, Bull. Sci. Math., 117 (1993), 211.
|
[12] |
G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces,, Trans. Amer. Math. Soc., 358 (2006), 1105.
doi: doi:10.1090/S0002-9947-05-03828-6. |
[13] |
K. Voss, Einige differentialgeometrische kongruenzsätze für geschlossene flächen und hyperflächen,, Math. Ann., 131 (1956), 180. Google Scholar |
show all references
References:
[1] |
J. L. M. Barbosa and A. G. Colares, Stability of hypersurfaces with constant $r$-mean curvature,, Ann. Global Anal. Geom., 15 (1997), 277.
doi: doi:10.1023/A:1006514303828. |
[2] |
I. Bivens, Integral formulas and hyperspheres in a simply connected space form,, Proc. Amer. Math. Soc., 88 (1983), 113.
|
[3] |
B.-Y. Chen, On an integral formula of Gauss-Bonnet-Grotemeyer,, Proc. Amer. Math. Soc., 28 (1971), 208.
|
[4] |
S. Y. Cheng and S.-T. Yau, Hypersurfaces with constant scalar curvature,, Math. Ann., 225 (1977), 195.
doi: doi:10.1007/BF01425237. |
[5] |
S. S. Chern, A simple intrinsic proof of the Gauss-Bonnet formula for closed Riemannian manifolds,, Ann. of Math. (2), 45 (1944), 747.
doi: doi:10.2307/1969302. |
[6] |
S. S. Chern, On the curvatura integra in a Riemannian manifold,, Ann. of Math. (2), 46 (1945), 674.
doi: doi:10.2307/1969203. |
[7] |
K. P. Grotemeyer, Über das Normalenbündel differenzierbarer mannigfaltigkeiten,, Ann. Acad. Sci. Fenn., (1963), 1. Google Scholar |
[8] |
H. Li, Hypersurfaces with constant scalar curvature in space forms,, Math. Ann., 305 (1996), 665.
doi: doi:10.1007/BF01444243. |
[9] |
H. Li, Global rigidity theorems of hypersurfaces,, Ark. Math., 35 (1997), 327.
doi: doi:10.1007/BF02559973. |
[10] |
R. Reilly, Variational properties of functions of the mean curvatures for hypersurfaces in space forms,, J. Diff. Geom., 8 (1973), 465.
|
[11] |
H. Rosenberg, Hypersurfaces of constant curvature in space forms,, Bull. Sci. Math., 117 (1993), 211.
|
[12] |
G. Solanes, Integral geometry and the Gauss-Bonnet theorem in constant curvature spaces,, Trans. Amer. Math. Soc., 358 (2006), 1105.
doi: doi:10.1090/S0002-9947-05-03828-6. |
[13] |
K. Voss, Einige differentialgeometrische kongruenzsätze für geschlossene flächen und hyperflächen,, Math. Ann., 131 (1956), 180. Google Scholar |
[1] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[2] |
Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020374 |
[3] |
Huyuan Chen, Dong Ye, Feng Zhou. On gaussian curvature equation in $ \mathbb{R}^2 $ with prescribed nonpositive curvature. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3201-3214. doi: 10.3934/dcds.2020125 |
[4] |
Petr Pauš, Shigetoshi Yazaki. Segmentation of color images using mean curvature flow and parametric curves. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1123-1132. doi: 10.3934/dcdss.2020389 |
[5] |
Isabeau Birindelli, Françoise Demengel, Fabiana Leoni. Boundary asymptotics of the ergodic functions associated with fully nonlinear operators through a Liouville type theorem. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020395 |
[6] |
Kohei Nakamura. An application of interpolation inequalities between the deviation of curvature and the isoperimetric ratio to the length-preserving flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1093-1102. doi: 10.3934/dcdss.2020385 |
[7] |
Tetsuya Ishiwata, Takeshi Ohtsuka. Numerical analysis of an ODE and a level set methods for evolving spirals by crystalline eikonal-curvature flow. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 893-907. doi: 10.3934/dcdss.2020390 |
[8] |
Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020378 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]