-
Previous Article
Diffusion reconstruction from very noisy tomographic data
- IPI Home
- This Issue
-
Next Article
The Gauss-Bonnet-Grotemeyer Theorem in space forms
Synthetic focusing in ultrasound modulated tomography
1. | Mathematics Department, Texas A&M University, College Station, TX 77843-3368 |
2. | Mathematics Department, University of Arizona, Tucson, AZ 85721, United States |
References:
[1] |
M. Agranovsky and P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed,, Inverse Problems, 23 (2007), 2089.
doi: doi:10.1088/0266-5611/23/5/016. |
[2] |
M. Agranovsky, P. Kuchment and L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography,, Ch. 8 in Ref 30, (): 89. Google Scholar |
[3] |
M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.
doi: doi:10.1016/j.jfa.2007.03.022. |
[4] |
M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions,, J. Funct. Anal., 139 (1996), 383.
doi: doi:10.1006/jfan.1996.0090. |
[5] |
M. Allmaras and W. Bangerth, Reconstructions in Ultrasound Modulated Optical Tomography,, Preprint, (). Google Scholar |
[6] |
H. Ammari, "An Introduction to Mathematics of Emerging Biomedical Imaging,", Springer-Verlag, (2008). Google Scholar |
[7] |
H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557.
doi: doi:10.1137/070686408. |
[8] |
D. C. Barber and B. H. Brown, Applied potential tomography,, J. Phys. E.: Sci. Instrum., 17 (1984), 723.
doi: doi:10.1088/0022-3735/17/9/002. |
[9] |
L. Borcea, Electrical impedance tomography,, Inverse Problems, 18 (2002).
doi: doi:10.1088/0266-5611/18/6/201. |
[10] |
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213.
doi: doi:10.1137/S0036141002417814. |
[11] |
D. Finch and Rakesh, The spherical mean value operator with centers on a sphere,, Inverse Problems, 23 (2007).
doi: doi:10.1088/0266-5611/23/6/S04. |
[12] |
D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, In Ref 30, (): 77. Google Scholar |
[13] |
B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Applied Math., 69 (2009), 565.
doi: doi:10.1137/080715123. |
[14] |
H. E. Hernandez-Figueroa, M. Zamboni-Rached and E. Recami (Editors), "Localized Waves,", IEEE Press, (2008). Google Scholar |
[15] |
M. Kempe, M. Larionov, D. Zaslavsky and A. Z. Genack, Acousto-optic tomography with multiply scattered light,, J. Opt. Soc. Am. A, 14 (1997), 1151.
doi: doi:10.1364/JOSAA.14.001151. |
[16] |
P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.
doi: doi:10.1017/S0956792508007353. |
[17] |
P. Kuchment and L. Kunyansky, Ultrasound modulated electric impedance tomography,, in preparation., (). Google Scholar |
[18] |
L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform,, Inverse Problems, 23 (2007), 373.
doi: doi:10.1088/0266-5611/23/1/021. |
[19] |
B. Lavandier, J. Jossinet and D. Cathignol, Quantitative assessment of ultrasound-induced resistance change in saline solution,, Medical & Biological Engineering & Computing, 38 (2000), 150.
doi: doi:10.1007/BF02344769. |
[20] |
B. Lavandier, J. Jossinet and D. Cathignol, Experimental measurement of the acousto-electric interaction signal in saline solution,, Ultrasonics, 38 (2000), 929.
doi: doi:10.1016/S0041-624X(00)00029-9. |
[21] |
J. Li and L.-H. Wang, Methods for parallel-detection-based ultrasound-modulated optical tomography,, Applied Optics, 41 (2002), 2079.
doi: doi:10.1364/AO.41.002079. |
[22] |
J. Li and L.-H. Wang, Ultrasound-modulated optical computed tomography of biological tissues,, Appl. Phys. Lett., 84 (2004), 1597.
doi: doi:10.1063/1.1651330. |
[23] |
H. Nam, "Ultrasound Modulated Optical Tomography,", Ph.D thesis, (2002). Google Scholar |
[24] |
H. Nam and D. Dobson, Ultrasound modulated optical tomography,, preprint 2004., (2004). Google Scholar |
[25] |
Linh V. Nguyen, A family of inversion formulas in thermoacoustic tomography,, Inverse Probl. Imaging, 3 (2009), 649.
doi: doi:10.3934/ipi.2009.3.649. |
[26] |
A. A. Oraevsky and A. A. Karabutov, Optoacoustic tomography,, edited by CRC, (2003), 34. Google Scholar |
[27] |
S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging (Guest Editors' introduction),, Inverse Problems, 23 (2007).
|
[28] |
V. V. Tuchin (Editor), "Handbook of Optical Biomedical Diagonstics,", SPIE, (2002). Google Scholar |
[29] |
T. Vo-Dinh (Editor), "Biomedical Photonics Handbook,", edited by CRC, (2003). Google Scholar |
[30] |
L. H. Wang (Editor), "Photoacoustic imaging and spectroscopy,", CRC Press, (2009). Google Scholar |
[31] |
L. V. Wang and H. Wu, "Biomedical Optics. Principles and Imaging,", Wiley-Interscience, (2007). Google Scholar |
[32] |
M. Xu and L.-H. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,, Phys. Rev. E, 71 (2005).
doi: doi:10.1103/PhysRevE.71.016706. |
[33] |
M. Xu and L.-H. V. Wang, Photoacoustic imaging in biomedicine,, Review of Scientific Instruments, 77 (2006), 041101. Google Scholar |
[34] |
H. Zhang and L. Wang, Acousto-electric tomography,, Proc. SPIE, 5320 (2004), 145.
doi: doi:10.1117/12.532610. |
show all references
References:
[1] |
M. Agranovsky and P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed,, Inverse Problems, 23 (2007), 2089.
doi: doi:10.1088/0266-5611/23/5/016. |
[2] |
M. Agranovsky, P. Kuchment and L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography,, Ch. 8 in Ref 30, (): 89. Google Scholar |
[3] |
M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.
doi: doi:10.1016/j.jfa.2007.03.022. |
[4] |
M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions,, J. Funct. Anal., 139 (1996), 383.
doi: doi:10.1006/jfan.1996.0090. |
[5] |
M. Allmaras and W. Bangerth, Reconstructions in Ultrasound Modulated Optical Tomography,, Preprint, (). Google Scholar |
[6] |
H. Ammari, "An Introduction to Mathematics of Emerging Biomedical Imaging,", Springer-Verlag, (2008). Google Scholar |
[7] |
H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557.
doi: doi:10.1137/070686408. |
[8] |
D. C. Barber and B. H. Brown, Applied potential tomography,, J. Phys. E.: Sci. Instrum., 17 (1984), 723.
doi: doi:10.1088/0022-3735/17/9/002. |
[9] |
L. Borcea, Electrical impedance tomography,, Inverse Problems, 18 (2002).
doi: doi:10.1088/0266-5611/18/6/201. |
[10] |
D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres,, SIAM J. Math. Anal., 35 (2004), 1213.
doi: doi:10.1137/S0036141002417814. |
[11] |
D. Finch and Rakesh, The spherical mean value operator with centers on a sphere,, Inverse Problems, 23 (2007).
doi: doi:10.1088/0266-5611/23/6/S04. |
[12] |
D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, In Ref 30, (): 77. Google Scholar |
[13] |
B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Applied Math., 69 (2009), 565.
doi: doi:10.1137/080715123. |
[14] |
H. E. Hernandez-Figueroa, M. Zamboni-Rached and E. Recami (Editors), "Localized Waves,", IEEE Press, (2008). Google Scholar |
[15] |
M. Kempe, M. Larionov, D. Zaslavsky and A. Z. Genack, Acousto-optic tomography with multiply scattered light,, J. Opt. Soc. Am. A, 14 (1997), 1151.
doi: doi:10.1364/JOSAA.14.001151. |
[16] |
P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography,, European J. Appl. Math., 19 (2008), 191.
doi: doi:10.1017/S0956792508007353. |
[17] |
P. Kuchment and L. Kunyansky, Ultrasound modulated electric impedance tomography,, in preparation., (). Google Scholar |
[18] |
L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform,, Inverse Problems, 23 (2007), 373.
doi: doi:10.1088/0266-5611/23/1/021. |
[19] |
B. Lavandier, J. Jossinet and D. Cathignol, Quantitative assessment of ultrasound-induced resistance change in saline solution,, Medical & Biological Engineering & Computing, 38 (2000), 150.
doi: doi:10.1007/BF02344769. |
[20] |
B. Lavandier, J. Jossinet and D. Cathignol, Experimental measurement of the acousto-electric interaction signal in saline solution,, Ultrasonics, 38 (2000), 929.
doi: doi:10.1016/S0041-624X(00)00029-9. |
[21] |
J. Li and L.-H. Wang, Methods for parallel-detection-based ultrasound-modulated optical tomography,, Applied Optics, 41 (2002), 2079.
doi: doi:10.1364/AO.41.002079. |
[22] |
J. Li and L.-H. Wang, Ultrasound-modulated optical computed tomography of biological tissues,, Appl. Phys. Lett., 84 (2004), 1597.
doi: doi:10.1063/1.1651330. |
[23] |
H. Nam, "Ultrasound Modulated Optical Tomography,", Ph.D thesis, (2002). Google Scholar |
[24] |
H. Nam and D. Dobson, Ultrasound modulated optical tomography,, preprint 2004., (2004). Google Scholar |
[25] |
Linh V. Nguyen, A family of inversion formulas in thermoacoustic tomography,, Inverse Probl. Imaging, 3 (2009), 649.
doi: doi:10.3934/ipi.2009.3.649. |
[26] |
A. A. Oraevsky and A. A. Karabutov, Optoacoustic tomography,, edited by CRC, (2003), 34. Google Scholar |
[27] |
S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging (Guest Editors' introduction),, Inverse Problems, 23 (2007).
|
[28] |
V. V. Tuchin (Editor), "Handbook of Optical Biomedical Diagonstics,", SPIE, (2002). Google Scholar |
[29] |
T. Vo-Dinh (Editor), "Biomedical Photonics Handbook,", edited by CRC, (2003). Google Scholar |
[30] |
L. H. Wang (Editor), "Photoacoustic imaging and spectroscopy,", CRC Press, (2009). Google Scholar |
[31] |
L. V. Wang and H. Wu, "Biomedical Optics. Principles and Imaging,", Wiley-Interscience, (2007). Google Scholar |
[32] |
M. Xu and L.-H. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography,, Phys. Rev. E, 71 (2005).
doi: doi:10.1103/PhysRevE.71.016706. |
[33] |
M. Xu and L.-H. V. Wang, Photoacoustic imaging in biomedicine,, Review of Scientific Instruments, 77 (2006), 041101. Google Scholar |
[34] |
H. Zhang and L. Wang, Acousto-electric tomography,, Proc. SPIE, 5320 (2004), 145.
doi: doi:10.1117/12.532610. |
[1] |
Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261 |
[2] |
Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041 |
[3] |
Peter Frolkovič, Viera Kleinová. A new numerical method for level set motion in normal direction used in optical flow estimation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 851-863. doi: 10.3934/dcdss.2020347 |
[4] |
Karol Mikula, Jozef Urbán, Michal Kollár, Martin Ambroz, Ivan Jarolímek, Jozef Šibík, Mária Šibíková. An automated segmentation of NATURA 2000 habitats from Sentinel-2 optical data. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1017-1032. doi: 10.3934/dcdss.2020348 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]