November  2010, 4(4): 665-673. doi: 10.3934/ipi.2010.4.665

Synthetic focusing in ultrasound modulated tomography

1. 

Mathematics Department, Texas A&M University, College Station, TX 77843-3368

2. 

Mathematics Department, University of Arizona, Tucson, AZ 85721, United States

Received  January 2009 Revised  May 2009 Published  September 2010

Several hybrid tomographic methods utilizing ultrasound modulation have been introduced lately. Success of these methods hinges on the feasibility of focusing ultrasound waves at an arbitrary point of interest. Such focusing, however, is difficult to achieve in practice. We thus propose a way to avoid the use of focused waves through what we call synthetic focusing, i.e. by reconstructing the would-be response to the focused modulation from the measurements corresponding to realistic unfocused waves. Examples of reconstructions from simulated data are provided. This non-technical paper describes only the general concept, while technical details will appear elsewhere.
Citation: Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems and Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665
References:
[1]

M. Agranovsky and P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed, Inverse Problems, 23 (2007), 2089-2102. doi: doi:10.1088/0266-5611/23/5/016.

[2]

M. Agranovsky, P. Kuchment and L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography,, Ch. 8 in Ref 30, (): 89. 

[3]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal., 248 (2007), 344-386. doi: doi:10.1016/j.jfa.2007.03.022.

[4]

M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139 (1996), 383-414. doi: doi:10.1006/jfan.1996.0090.

[5]

M. Allmaras and W. Bangerth, Reconstructions in Ultrasound Modulated Optical Tomography,, Preprint, (). 

[6]

H. Ammari, "An Introduction to Mathematics of Emerging Biomedical Imaging," Springer-Verlag, 2008.

[7]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573. doi: doi:10.1137/070686408.

[8]

D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E.: Sci. Instrum., 17 (1984), 723-733. doi: doi:10.1088/0022-3735/17/9/002.

[9]

L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), R99-R136. doi: doi:10.1088/0266-5611/18/6/201.

[10]

D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 1213-1240. doi: doi:10.1137/S0036141002417814.

[11]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere, Inverse Problems, 23 (2007), S37-S50. doi: doi:10.1088/0266-5611/23/6/S04.

[12]

D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, In Ref 30, (): 77. 

[13]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Applied Math., 69 (2009), 565-576. doi: doi:10.1137/080715123.

[14]

H. E. Hernandez-Figueroa, M. Zamboni-Rached and E. Recami (Editors), "Localized Waves," IEEE Press, J. Wiley & Sons, Inc., Hoboken, NJ 2008.

[15]

M. Kempe, M. Larionov, D. Zaslavsky and A. Z. Genack, Acousto-optic tomography with multiply scattered light, J. Opt. Soc. Am. A, 14 (1997), 1151-1158. doi: doi:10.1364/JOSAA.14.001151.

[16]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, European J. Appl. Math., 19 (2008), 191-224. doi: doi:10.1017/S0956792508007353.

[17]

P. Kuchment and L. Kunyansky, Ultrasound modulated electric impedance tomography,, in preparation., (). 

[18]

L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Problems, 23 (2007), 373-383. doi: doi:10.1088/0266-5611/23/1/021.

[19]

B. Lavandier, J. Jossinet and D. Cathignol, Quantitative assessment of ultrasound-induced resistance change in saline solution, Medical & Biological Engineering & Computing, 38 (2000), 150-155. doi: doi:10.1007/BF02344769.

[20]

B. Lavandier, J. Jossinet and D. Cathignol, Experimental measurement of the acousto-electric interaction signal in saline solution, Ultrasonics, 38 (2000), 929-936. doi: doi:10.1016/S0041-624X(00)00029-9.

[21]

J. Li and L.-H. Wang, Methods for parallel-detection-based ultrasound-modulated optical tomography, Applied Optics, 41 (2002), 2079-2084. doi: doi:10.1364/AO.41.002079.

[22]

J. Li and L.-H. Wang, Ultrasound-modulated optical computed tomography of biological tissues, Appl. Phys. Lett., 84 (2004), 1597-1599. doi: doi:10.1063/1.1651330.

[23]

H. Nam, "Ultrasound Modulated Optical Tomography," Ph.D thesis, Texas A&M University, 2002.

[24]

H. Nam and D. Dobson, Ultrasound modulated optical tomography, preprint 2004.

[25]

Linh V. Nguyen, A family of inversion formulas in thermoacoustic tomography, Inverse Probl. Imaging, 3 (2009), 649-675. doi: doi:10.3934/ipi.2009.3.649.

[26]

A. A. Oraevsky and A. A. Karabutov, Optoacoustic tomography, in Ref 29, (2003), 34-1 - 34-34.

[27]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging (Guest Editors' introduction), Inverse Problems, 23 (2007), S01-S10.

[28]

V. V. Tuchin (Editor), "Handbook of Optical Biomedical Diagonstics," SPIE, Bellingham, WA 2002.

[29]

T. Vo-Dinh (Editor), "Biomedical Photonics Handbook," edited by CRC, Boca Raton, FL, 2003.

[30]

L. H. Wang (Editor), "Photoacoustic imaging and spectroscopy," CRC Press, 2009.

[31]

L. V. Wang and H. Wu, "Biomedical Optics. Principles and Imaging," Wiley-Interscience, 2007.

[32]

M. Xu and L.-H. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E, 71 (2005), 016706. doi: doi:10.1103/PhysRevE.71.016706.

[33]

M. Xu and L.-H. V. Wang, Photoacoustic imaging in biomedicine, Review of Scientific Instruments, 77 (2006), 041101-01 - 041101-22.

[34]

H. Zhang and L. Wang, Acousto-electric tomography, Proc. SPIE, 5320 (2004), 145-149. doi: doi:10.1117/12.532610.

show all references

References:
[1]

M. Agranovsky and P. Kuchment, Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed, Inverse Problems, 23 (2007), 2089-2102. doi: doi:10.1088/0266-5611/23/5/016.

[2]

M. Agranovsky, P. Kuchment and L. Kunyansky, On reconstruction formulas and algorithms for the thermoacoustic and photoacoustic tomography,, Ch. 8 in Ref 30, (): 89. 

[3]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform, J. Funct. Anal., 248 (2007), 344-386. doi: doi:10.1016/j.jfa.2007.03.022.

[4]

M. Agranovsky and E. T. Quinto, Injectivity sets for the Radon transform over circles and complete systems of radial functions, J. Funct. Anal., 139 (1996), 383-414. doi: doi:10.1006/jfan.1996.0090.

[5]

M. Allmaras and W. Bangerth, Reconstructions in Ultrasound Modulated Optical Tomography,, Preprint, (). 

[6]

H. Ammari, "An Introduction to Mathematics of Emerging Biomedical Imaging," Springer-Verlag, 2008.

[7]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573. doi: doi:10.1137/070686408.

[8]

D. C. Barber and B. H. Brown, Applied potential tomography, J. Phys. E.: Sci. Instrum., 17 (1984), 723-733. doi: doi:10.1088/0022-3735/17/9/002.

[9]

L. Borcea, Electrical impedance tomography, Inverse Problems, 18 (2002), R99-R136. doi: doi:10.1088/0266-5611/18/6/201.

[10]

D. Finch, S. Patch and Rakesh, Determining a function from its mean values over a family of spheres, SIAM J. Math. Anal., 35 (2004), 1213-1240. doi: doi:10.1137/S0036141002417814.

[11]

D. Finch and Rakesh, The spherical mean value operator with centers on a sphere, Inverse Problems, 23 (2007), S37-S50. doi: doi:10.1088/0266-5611/23/6/S04.

[12]

D. Finch and Rakesh, Recovering a function from its spherical mean values in two and three dimensions,, In Ref 30, (): 77. 

[13]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Applied Math., 69 (2009), 565-576. doi: doi:10.1137/080715123.

[14]

H. E. Hernandez-Figueroa, M. Zamboni-Rached and E. Recami (Editors), "Localized Waves," IEEE Press, J. Wiley & Sons, Inc., Hoboken, NJ 2008.

[15]

M. Kempe, M. Larionov, D. Zaslavsky and A. Z. Genack, Acousto-optic tomography with multiply scattered light, J. Opt. Soc. Am. A, 14 (1997), 1151-1158. doi: doi:10.1364/JOSAA.14.001151.

[16]

P. Kuchment and L. Kunyansky, Mathematics of thermoacoustic tomography, European J. Appl. Math., 19 (2008), 191-224. doi: doi:10.1017/S0956792508007353.

[17]

P. Kuchment and L. Kunyansky, Ultrasound modulated electric impedance tomography,, in preparation., (). 

[18]

L. A. Kunyansky, Explicit inversion formulae for the spherical mean Radon transform, Inverse Problems, 23 (2007), 373-383. doi: doi:10.1088/0266-5611/23/1/021.

[19]

B. Lavandier, J. Jossinet and D. Cathignol, Quantitative assessment of ultrasound-induced resistance change in saline solution, Medical & Biological Engineering & Computing, 38 (2000), 150-155. doi: doi:10.1007/BF02344769.

[20]

B. Lavandier, J. Jossinet and D. Cathignol, Experimental measurement of the acousto-electric interaction signal in saline solution, Ultrasonics, 38 (2000), 929-936. doi: doi:10.1016/S0041-624X(00)00029-9.

[21]

J. Li and L.-H. Wang, Methods for parallel-detection-based ultrasound-modulated optical tomography, Applied Optics, 41 (2002), 2079-2084. doi: doi:10.1364/AO.41.002079.

[22]

J. Li and L.-H. Wang, Ultrasound-modulated optical computed tomography of biological tissues, Appl. Phys. Lett., 84 (2004), 1597-1599. doi: doi:10.1063/1.1651330.

[23]

H. Nam, "Ultrasound Modulated Optical Tomography," Ph.D thesis, Texas A&M University, 2002.

[24]

H. Nam and D. Dobson, Ultrasound modulated optical tomography, preprint 2004.

[25]

Linh V. Nguyen, A family of inversion formulas in thermoacoustic tomography, Inverse Probl. Imaging, 3 (2009), 649-675. doi: doi:10.3934/ipi.2009.3.649.

[26]

A. A. Oraevsky and A. A. Karabutov, Optoacoustic tomography, in Ref 29, (2003), 34-1 - 34-34.

[27]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging (Guest Editors' introduction), Inverse Problems, 23 (2007), S01-S10.

[28]

V. V. Tuchin (Editor), "Handbook of Optical Biomedical Diagonstics," SPIE, Bellingham, WA 2002.

[29]

T. Vo-Dinh (Editor), "Biomedical Photonics Handbook," edited by CRC, Boca Raton, FL, 2003.

[30]

L. H. Wang (Editor), "Photoacoustic imaging and spectroscopy," CRC Press, 2009.

[31]

L. V. Wang and H. Wu, "Biomedical Optics. Principles and Imaging," Wiley-Interscience, 2007.

[32]

M. Xu and L.-H. V. Wang, Universal back-projection algorithm for photoacoustic computed tomography, Phys. Rev. E, 71 (2005), 016706. doi: doi:10.1103/PhysRevE.71.016706.

[33]

M. Xu and L.-H. V. Wang, Photoacoustic imaging in biomedicine, Review of Scientific Instruments, 77 (2006), 041101-01 - 041101-22.

[34]

H. Zhang and L. Wang, Acousto-electric tomography, Proc. SPIE, 5320 (2004), 145-149. doi: doi:10.1117/12.532610.

[1]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems and Imaging, 2021, 15 (5) : 893-928. doi: 10.3934/ipi.2021021

[2]

Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems and Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693

[3]

Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems and Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111

[4]

Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems and Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649

[5]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems and Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[6]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems and Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[7]

Ke Zhang, Maokun Li, Fan Yang, Shenheng Xu, Aria Abubakar. Electrical impedance tomography with multiplicative regularization. Inverse Problems and Imaging, 2019, 13 (6) : 1139-1159. doi: 10.3934/ipi.2019051

[8]

Bastian Gebauer. Localized potentials in electrical impedance tomography. Inverse Problems and Imaging, 2008, 2 (2) : 251-269. doi: 10.3934/ipi.2008.2.251

[9]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems and Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[10]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems and Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[11]

Ville Kolehmainen, Matti Lassas, Petri Ola, Samuli Siltanen. Recovering boundary shape and conductivity in electrical impedance tomography. Inverse Problems and Imaging, 2013, 7 (1) : 217-242. doi: 10.3934/ipi.2013.7.217

[12]

Chase Mathison. Thermoacoustic Tomography with circular integrating detectors and variable wave speed. Inverse Problems and Imaging, 2020, 14 (4) : 665-682. doi: 10.3934/ipi.2020030

[13]

Meghdoot Mozumder, Tanja Tarvainen, Simon Arridge, Jari P. Kaipio, Cosimo D'Andrea, Ville Kolehmainen. Approximate marginalization of absorption and scattering in fluorescence diffuse optical tomography. Inverse Problems and Imaging, 2016, 10 (1) : 227-246. doi: 10.3934/ipi.2016.10.227

[14]

Adriana González, Laurent Jacques, Christophe De Vleeschouwer, Philippe Antoine. Compressive optical deflectometric tomography: A constrained total-variation minimization approach. Inverse Problems and Imaging, 2014, 8 (2) : 421-457. doi: 10.3934/ipi.2014.8.421

[15]

Dong liu, Ville Kolehmainen, Samuli Siltanen, Anne-maria Laukkanen, Aku Seppänen. Estimation of conductivity changes in a region of interest with electrical impedance tomography. Inverse Problems and Imaging, 2015, 9 (1) : 211-229. doi: 10.3934/ipi.2015.9.211

[16]

Liliana Borcea, Fernando Guevara Vasquez, Alexander V. Mamonov. Study of noise effects in electrical impedance tomography with resistor networks. Inverse Problems and Imaging, 2013, 7 (2) : 417-443. doi: 10.3934/ipi.2013.7.417

[17]

Gen Nakamura, Päivi Ronkanen, Samuli Siltanen, Kazumi Tanuma. Recovering conductivity at the boundary in three-dimensional electrical impedance tomography. Inverse Problems and Imaging, 2011, 5 (2) : 485-510. doi: 10.3934/ipi.2011.5.485

[18]

Nicolay M. Tanushev, Luminita Vese. A piecewise-constant binary model for electrical impedance tomography. Inverse Problems and Imaging, 2007, 1 (2) : 423-435. doi: 10.3934/ipi.2007.1.423

[19]

Nuutti Hyvönen, Lassi Päivärinta, Janne P. Tamminen. Enhancing D-bar reconstructions for electrical impedance tomography with conformal maps. Inverse Problems and Imaging, 2018, 12 (2) : 373-400. doi: 10.3934/ipi.2018017

[20]

Erfang Ma. Integral formulation of the complete electrode model of electrical impedance tomography. Inverse Problems and Imaging, 2020, 14 (2) : 385-398. doi: 10.3934/ipi.2020017

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (134)
  • HTML views (0)
  • Cited by (27)

Other articles
by authors

[Back to Top]