November  2010, 4(4): 675-683. doi: 10.3934/ipi.2010.4.675

Diffusion reconstruction from very noisy tomographic data

1. 

Department of Mathematics, Saarland University, D-66041 Saarbrucken, Germany

Received  January 2009 Published  September 2010

As a consequence of very noisy tomographic data the reconstructed images are contaminated by severely amplified noise. Typically two remedies are considered. Firstly, the data are smoothed, this is called pre-whitening in the engineering literature. The disadvantage here is that the individually treated data sets could become inconsistent. Secondly, the image, reconstructed from the original data sets, is treated by methods of image smoothing. As example diffusion filters are mentioned. In this paper we present a method where the reconstruction of the smoothed image is performed in one step; i.e., we develop special reconstruction kernels, which directly compute the image smoothed by a diffusion filter. Examples from synthetic data are presented.
Citation: Alfred K. Louis. Diffusion reconstruction from very noisy tomographic data. Inverse Problems & Imaging, 2010, 4 (4) : 675-683. doi: 10.3934/ipi.2010.4.675
References:
[1]

M. Abramowith and I. Stegun, "Handbook of Mathematical Functions,", Dover, (1972).   Google Scholar

[2]

S. Bonnet, F. Peyrin, F. Turjman and R. Prost, Multiresolution reconstruction in Fan-Beam tomography,, IEEE Transactions on Image Processing, 11 (2002), 169.  doi: doi:10.1109/83.988951.  Google Scholar

[3]

J. Boman and E. T. Quinto, Support theorems for real analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: doi:10.1215/S0012-7094-87-05547-5.  Google Scholar

[4]

J. F. Canny, A computational approach to edge detection,, IEEE TPAMI, 8 (1986), 679.   Google Scholar

[5]

D. Fanelli and O. Öktem, Electron tomography: a short overview with an emphasis on the absorption potential of the forward problem,, Inverse Problems, 24 (2008).   Google Scholar

[6]

A. Katsevich, Improved cone beam local tomography,, Inverse Problems, 22 (2006), 627.  doi: doi:10.1088/0266-5611/22/2/015.  Google Scholar

[7]

M. K. Likht, On the calculation of functionals in the solution of linear equations of the first kind,, Comput. Math. Math. Phys. (USSR), 7 (1967), 271.  doi: doi:10.1016/0041-5553(67)90046-8.  Google Scholar

[8]

A. K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind,, Inverse Problems, 6 (1990), 427.  doi: doi:10.1088/0266-5611/6/3/011.  Google Scholar

[9]

A. K. Louis and P. Maass, Contour reconstruction in 3-D X-ray CT,, IEEE Transactions on Medical Imaging, 12 (1993), 764.  doi: doi:10.1109/42.251129.  Google Scholar

[10]

A. K. Louis, P. Maass and A. Rieder, "Wavelets,", Teubner, (1994).   Google Scholar

[11]

A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175.  doi: doi:10.1088/0266-5611/12/2/005.  Google Scholar

[12]

A. K. Louis, A unified approach to regularization methods for linear ill-posed problems,, Inverse Problems, 15 (1999), 489.   Google Scholar

[13]

A. K. Louis, Combining image reconstruction and image analysis with an application to 2D tomography,, SIAM J. Imaging Sciences, 1 (2008), 188.  doi: doi:10.1137/070700863.  Google Scholar

[14]

A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR,, Surveys on Solution Methods for Inverse Problems, (2000), 147.   Google Scholar

[15]

F. Natterer, "The Mathematics of Computerized Tomography,", Classics in Applied Mathematics, (2001).   Google Scholar

[16]

S. Oeckl, T. Schön, A. Knauf and A. K. Louis, "Multiresolution 3D-computerized Tomography and its Application to NDT,", Proc. ECNDT, 9 (2006).   Google Scholar

[17]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629.  doi: doi:10.1109/34.56205.  Google Scholar

[18]

E. T. Quinto and O. Öktem, Local tomography in electron microscopy,, SIAM J. Appl. Math., 68 (2008), 1282.  doi: doi:10.1137/07068326X.  Google Scholar

[19]

K. T. Smith, Inversion of the x-ray transform,, SIAM-AMS Proc., 14 (1984), 41.   Google Scholar

[20]

E. Vainberg and I. A. Kazak and V. P. Kurozaev, Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections,, Soviet J Nondestructive Testing, 17 (1981), 415.   Google Scholar

[21]

J. Weickert, "Anisotropic Diffusion in Image Processing,", Teubner: Stuttgart, (1998).   Google Scholar

show all references

References:
[1]

M. Abramowith and I. Stegun, "Handbook of Mathematical Functions,", Dover, (1972).   Google Scholar

[2]

S. Bonnet, F. Peyrin, F. Turjman and R. Prost, Multiresolution reconstruction in Fan-Beam tomography,, IEEE Transactions on Image Processing, 11 (2002), 169.  doi: doi:10.1109/83.988951.  Google Scholar

[3]

J. Boman and E. T. Quinto, Support theorems for real analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: doi:10.1215/S0012-7094-87-05547-5.  Google Scholar

[4]

J. F. Canny, A computational approach to edge detection,, IEEE TPAMI, 8 (1986), 679.   Google Scholar

[5]

D. Fanelli and O. Öktem, Electron tomography: a short overview with an emphasis on the absorption potential of the forward problem,, Inverse Problems, 24 (2008).   Google Scholar

[6]

A. Katsevich, Improved cone beam local tomography,, Inverse Problems, 22 (2006), 627.  doi: doi:10.1088/0266-5611/22/2/015.  Google Scholar

[7]

M. K. Likht, On the calculation of functionals in the solution of linear equations of the first kind,, Comput. Math. Math. Phys. (USSR), 7 (1967), 271.  doi: doi:10.1016/0041-5553(67)90046-8.  Google Scholar

[8]

A. K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind,, Inverse Problems, 6 (1990), 427.  doi: doi:10.1088/0266-5611/6/3/011.  Google Scholar

[9]

A. K. Louis and P. Maass, Contour reconstruction in 3-D X-ray CT,, IEEE Transactions on Medical Imaging, 12 (1993), 764.  doi: doi:10.1109/42.251129.  Google Scholar

[10]

A. K. Louis, P. Maass and A. Rieder, "Wavelets,", Teubner, (1994).   Google Scholar

[11]

A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175.  doi: doi:10.1088/0266-5611/12/2/005.  Google Scholar

[12]

A. K. Louis, A unified approach to regularization methods for linear ill-posed problems,, Inverse Problems, 15 (1999), 489.   Google Scholar

[13]

A. K. Louis, Combining image reconstruction and image analysis with an application to 2D tomography,, SIAM J. Imaging Sciences, 1 (2008), 188.  doi: doi:10.1137/070700863.  Google Scholar

[14]

A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR,, Surveys on Solution Methods for Inverse Problems, (2000), 147.   Google Scholar

[15]

F. Natterer, "The Mathematics of Computerized Tomography,", Classics in Applied Mathematics, (2001).   Google Scholar

[16]

S. Oeckl, T. Schön, A. Knauf and A. K. Louis, "Multiresolution 3D-computerized Tomography and its Application to NDT,", Proc. ECNDT, 9 (2006).   Google Scholar

[17]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629.  doi: doi:10.1109/34.56205.  Google Scholar

[18]

E. T. Quinto and O. Öktem, Local tomography in electron microscopy,, SIAM J. Appl. Math., 68 (2008), 1282.  doi: doi:10.1137/07068326X.  Google Scholar

[19]

K. T. Smith, Inversion of the x-ray transform,, SIAM-AMS Proc., 14 (1984), 41.   Google Scholar

[20]

E. Vainberg and I. A. Kazak and V. P. Kurozaev, Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections,, Soviet J Nondestructive Testing, 17 (1981), 415.   Google Scholar

[21]

J. Weickert, "Anisotropic Diffusion in Image Processing,", Teubner: Stuttgart, (1998).   Google Scholar

[1]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[2]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[3]

Kateřina Škardová, Tomáš Oberhuber, Jaroslav Tintěra, Radomír Chabiniok. Signed-distance function based non-rigid registration of image series with varying image intensity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1145-1160. doi: 10.3934/dcdss.2020386

[4]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[5]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[6]

Balázs Kósa, Karol Mikula, Markjoe Olunna Uba, Antonia Weberling, Neophytos Christodoulou, Magdalena Zernicka-Goetz. 3D image segmentation supported by a point cloud. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 971-985. doi: 10.3934/dcdss.2020351

[7]

Jia Cai, Guanglong Xu, Zhensheng Hu. Sketch-based image retrieval via CAT loss with elastic net regularization. Mathematical Foundations of Computing, 2020, 3 (4) : 219-227. doi: 10.3934/mfc.2020013

[8]

Editorial Office. Retraction: Xiaohong Zhu, Zili Yang and Tabharit Zoubir, Research on the matching algorithm for heterologous image after deformation in the same scene. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1281-1281. doi: 10.3934/dcdss.2019088

[9]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[10]

Editorial Office. Retraction: Xiaohong Zhu, Lihe Zhou, Zili Yang and Joyati Debnath, A new text information extraction algorithm of video image under multimedia environment. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1265-1265. doi: 10.3934/dcdss.2019087

[11]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[14]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[15]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[16]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[17]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[18]

Min Chen, Olivier Goubet, Shenghao Li. Mathematical analysis of bump to bucket problem. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5567-5580. doi: 10.3934/cpaa.2020251

[19]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[20]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]