November  2010, 4(4): 675-683. doi: 10.3934/ipi.2010.4.675

Diffusion reconstruction from very noisy tomographic data

1. 

Department of Mathematics, Saarland University, D-66041 Saarbrucken, Germany

Received  January 2009 Published  September 2010

As a consequence of very noisy tomographic data the reconstructed images are contaminated by severely amplified noise. Typically two remedies are considered. Firstly, the data are smoothed, this is called pre-whitening in the engineering literature. The disadvantage here is that the individually treated data sets could become inconsistent. Secondly, the image, reconstructed from the original data sets, is treated by methods of image smoothing. As example diffusion filters are mentioned. In this paper we present a method where the reconstruction of the smoothed image is performed in one step; i.e., we develop special reconstruction kernels, which directly compute the image smoothed by a diffusion filter. Examples from synthetic data are presented.
Citation: Alfred K. Louis. Diffusion reconstruction from very noisy tomographic data. Inverse Problems & Imaging, 2010, 4 (4) : 675-683. doi: 10.3934/ipi.2010.4.675
References:
[1]

M. Abramowith and I. Stegun, "Handbook of Mathematical Functions,", Dover, (1972).   Google Scholar

[2]

S. Bonnet, F. Peyrin, F. Turjman and R. Prost, Multiresolution reconstruction in Fan-Beam tomography,, IEEE Transactions on Image Processing, 11 (2002), 169.  doi: doi:10.1109/83.988951.  Google Scholar

[3]

J. Boman and E. T. Quinto, Support theorems for real analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: doi:10.1215/S0012-7094-87-05547-5.  Google Scholar

[4]

J. F. Canny, A computational approach to edge detection,, IEEE TPAMI, 8 (1986), 679.   Google Scholar

[5]

D. Fanelli and O. Öktem, Electron tomography: a short overview with an emphasis on the absorption potential of the forward problem,, Inverse Problems, 24 (2008).   Google Scholar

[6]

A. Katsevich, Improved cone beam local tomography,, Inverse Problems, 22 (2006), 627.  doi: doi:10.1088/0266-5611/22/2/015.  Google Scholar

[7]

M. K. Likht, On the calculation of functionals in the solution of linear equations of the first kind,, Comput. Math. Math. Phys. (USSR), 7 (1967), 271.  doi: doi:10.1016/0041-5553(67)90046-8.  Google Scholar

[8]

A. K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind,, Inverse Problems, 6 (1990), 427.  doi: doi:10.1088/0266-5611/6/3/011.  Google Scholar

[9]

A. K. Louis and P. Maass, Contour reconstruction in 3-D X-ray CT,, IEEE Transactions on Medical Imaging, 12 (1993), 764.  doi: doi:10.1109/42.251129.  Google Scholar

[10]

A. K. Louis, P. Maass and A. Rieder, "Wavelets,", Teubner, (1994).   Google Scholar

[11]

A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175.  doi: doi:10.1088/0266-5611/12/2/005.  Google Scholar

[12]

A. K. Louis, A unified approach to regularization methods for linear ill-posed problems,, Inverse Problems, 15 (1999), 489.   Google Scholar

[13]

A. K. Louis, Combining image reconstruction and image analysis with an application to 2D tomography,, SIAM J. Imaging Sciences, 1 (2008), 188.  doi: doi:10.1137/070700863.  Google Scholar

[14]

A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR,, Surveys on Solution Methods for Inverse Problems, (2000), 147.   Google Scholar

[15]

F. Natterer, "The Mathematics of Computerized Tomography,", Classics in Applied Mathematics, (2001).   Google Scholar

[16]

S. Oeckl, T. Schön, A. Knauf and A. K. Louis, "Multiresolution 3D-computerized Tomography and its Application to NDT,", Proc. ECNDT, 9 (2006).   Google Scholar

[17]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629.  doi: doi:10.1109/34.56205.  Google Scholar

[18]

E. T. Quinto and O. Öktem, Local tomography in electron microscopy,, SIAM J. Appl. Math., 68 (2008), 1282.  doi: doi:10.1137/07068326X.  Google Scholar

[19]

K. T. Smith, Inversion of the x-ray transform,, SIAM-AMS Proc., 14 (1984), 41.   Google Scholar

[20]

E. Vainberg and I. A. Kazak and V. P. Kurozaev, Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections,, Soviet J Nondestructive Testing, 17 (1981), 415.   Google Scholar

[21]

J. Weickert, "Anisotropic Diffusion in Image Processing,", Teubner: Stuttgart, (1998).   Google Scholar

show all references

References:
[1]

M. Abramowith and I. Stegun, "Handbook of Mathematical Functions,", Dover, (1972).   Google Scholar

[2]

S. Bonnet, F. Peyrin, F. Turjman and R. Prost, Multiresolution reconstruction in Fan-Beam tomography,, IEEE Transactions on Image Processing, 11 (2002), 169.  doi: doi:10.1109/83.988951.  Google Scholar

[3]

J. Boman and E. T. Quinto, Support theorems for real analytic Radon transforms,, Duke Math. J., 55 (1987), 943.  doi: doi:10.1215/S0012-7094-87-05547-5.  Google Scholar

[4]

J. F. Canny, A computational approach to edge detection,, IEEE TPAMI, 8 (1986), 679.   Google Scholar

[5]

D. Fanelli and O. Öktem, Electron tomography: a short overview with an emphasis on the absorption potential of the forward problem,, Inverse Problems, 24 (2008).   Google Scholar

[6]

A. Katsevich, Improved cone beam local tomography,, Inverse Problems, 22 (2006), 627.  doi: doi:10.1088/0266-5611/22/2/015.  Google Scholar

[7]

M. K. Likht, On the calculation of functionals in the solution of linear equations of the first kind,, Comput. Math. Math. Phys. (USSR), 7 (1967), 271.  doi: doi:10.1016/0041-5553(67)90046-8.  Google Scholar

[8]

A. K. Louis and P. Maass, A mollifier method for linear operator equations of the first kind,, Inverse Problems, 6 (1990), 427.  doi: doi:10.1088/0266-5611/6/3/011.  Google Scholar

[9]

A. K. Louis and P. Maass, Contour reconstruction in 3-D X-ray CT,, IEEE Transactions on Medical Imaging, 12 (1993), 764.  doi: doi:10.1109/42.251129.  Google Scholar

[10]

A. K. Louis, P. Maass and A. Rieder, "Wavelets,", Teubner, (1994).   Google Scholar

[11]

A. K. Louis, Approximate inverse for linear and some nonlinear problems,, Inverse Problems, 12 (1996), 175.  doi: doi:10.1088/0266-5611/12/2/005.  Google Scholar

[12]

A. K. Louis, A unified approach to regularization methods for linear ill-posed problems,, Inverse Problems, 15 (1999), 489.   Google Scholar

[13]

A. K. Louis, Combining image reconstruction and image analysis with an application to 2D tomography,, SIAM J. Imaging Sciences, 1 (2008), 188.  doi: doi:10.1137/070700863.  Google Scholar

[14]

A. K. Louis and E. T. Quinto, Local tomographic methods in SONAR,, Surveys on Solution Methods for Inverse Problems, (2000), 147.   Google Scholar

[15]

F. Natterer, "The Mathematics of Computerized Tomography,", Classics in Applied Mathematics, (2001).   Google Scholar

[16]

S. Oeckl, T. Schön, A. Knauf and A. K. Louis, "Multiresolution 3D-computerized Tomography and its Application to NDT,", Proc. ECNDT, 9 (2006).   Google Scholar

[17]

P. Perona and J. Malik, Scale-space and edge detection using anisotropic diffusion,, IEEE Trans. on Pattern Analysis and Machine Intelligence, 12 (1990), 629.  doi: doi:10.1109/34.56205.  Google Scholar

[18]

E. T. Quinto and O. Öktem, Local tomography in electron microscopy,, SIAM J. Appl. Math., 68 (2008), 1282.  doi: doi:10.1137/07068326X.  Google Scholar

[19]

K. T. Smith, Inversion of the x-ray transform,, SIAM-AMS Proc., 14 (1984), 41.   Google Scholar

[20]

E. Vainberg and I. A. Kazak and V. P. Kurozaev, Reconstruction of the internal three-dimensional structure of objects based on real-time integral projections,, Soviet J Nondestructive Testing, 17 (1981), 415.   Google Scholar

[21]

J. Weickert, "Anisotropic Diffusion in Image Processing,", Teubner: Stuttgart, (1998).   Google Scholar

[1]

Lacramioara Grecu, Constantin Popa. Constrained SART algorithm for inverse problems in image reconstruction. Inverse Problems & Imaging, 2013, 7 (1) : 199-216. doi: 10.3934/ipi.2013.7.199

[2]

Jianjun Zhang, Yunyi Hu, James G. Nagy. A scaled gradient method for digital tomographic image reconstruction. Inverse Problems & Imaging, 2018, 12 (1) : 239-259. doi: 10.3934/ipi.2018010

[3]

Wenxiang Cong, Ge Wang, Qingsong Yang, Jia Li, Jiang Hsieh, Rongjie Lai. CT image reconstruction on a low dimensional manifold. Inverse Problems & Imaging, 2019, 13 (3) : 449-460. doi: 10.3934/ipi.2019022

[4]

Chengxiang Wang, Li Zeng, Yumeng Guo, Lingli Zhang. Wavelet tight frame and prior image-based image reconstruction from limited-angle projection data. Inverse Problems & Imaging, 2017, 11 (6) : 917-948. doi: 10.3934/ipi.2017043

[5]

Yunhai Xiao, Junfeng Yang, Xiaoming Yuan. Alternating algorithms for total variation image reconstruction from random projections. Inverse Problems & Imaging, 2012, 6 (3) : 547-563. doi: 10.3934/ipi.2012.6.547

[6]

Ming Yan, Alex A. T. Bui, Jason Cong, Luminita A. Vese. General convergent expectation maximization (EM)-type algorithms for image reconstruction. Inverse Problems & Imaging, 2013, 7 (3) : 1007-1029. doi: 10.3934/ipi.2013.7.1007

[7]

G. Mastroeni, L. Pellegrini. On the image space analysis for vector variational inequalities. Journal of Industrial & Management Optimization, 2005, 1 (1) : 123-132. doi: 10.3934/jimo.2005.1.123

[8]

Shouhong Yang. Semidefinite programming via image space analysis. Journal of Industrial & Management Optimization, 2016, 12 (4) : 1187-1197. doi: 10.3934/jimo.2016.12.1187

[9]

Yonggui Zhu, Yuying Shi, Bin Zhang, Xinyan Yu. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Problems & Imaging, 2014, 8 (3) : 925-937. doi: 10.3934/ipi.2014.8.925

[10]

Yunmei Chen, Xiaojing Ye, Feng Huang. A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data. Inverse Problems & Imaging, 2010, 4 (2) : 223-240. doi: 10.3934/ipi.2010.4.223

[11]

Jiangchuan Fan, Xinyu Guo, Jianjun Du, Weiliang Wen, Xianju Lu, Brahmani Louiza. Analysis of the clustering fusion algorithm for multi-band color image. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1233-1249. doi: 10.3934/dcdss.2019085

[12]

Victor Churchill, Rick Archibald, Anne Gelb. Edge-adaptive $ \ell_2 $ regularization image reconstruction from non-uniform Fourier data. Inverse Problems & Imaging, 2019, 13 (5) : 931-958. doi: 10.3934/ipi.2019042

[13]

Dana Paquin, Doron Levy, Eduard Schreibmann, Lei Xing. Multiscale Image Registration. Mathematical Biosciences & Engineering, 2006, 3 (2) : 389-418. doi: 10.3934/mbe.2006.3.389

[14]

Antoni Buades, Bartomeu Coll, Jose-Luis Lisani, Catalina Sbert. Conditional image diffusion. Inverse Problems & Imaging, 2007, 1 (4) : 593-608. doi: 10.3934/ipi.2007.1.593

[15]

Wenzhong Zhu, Huanlong Jiang, Erli Wang, Yani Hou, Lidong Xian, Joyati Debnath. X-ray image global enhancement algorithm in medical image classification. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1297-1309. doi: 10.3934/dcdss.2019089

[16]

Jianhong (Jackie) Shen, Sung Ha Kang. Quantum TV and applications in image processing. Inverse Problems & Imaging, 2007, 1 (3) : 557-575. doi: 10.3934/ipi.2007.1.557

[17]

Weihong Guo, Jing Qin. A geometry guided image denoising scheme. Inverse Problems & Imaging, 2013, 7 (2) : 499-521. doi: 10.3934/ipi.2013.7.499

[18]

Zhao Yi, Justin W. L. Wan. An inviscid model for nonrigid image registration. Inverse Problems & Imaging, 2011, 5 (1) : 263-284. doi: 10.3934/ipi.2011.5.263

[19]

Konovenko Nadiia, Lychagin Valentin. Möbius invariants in image recognition. Journal of Geometric Mechanics, 2017, 9 (2) : 191-206. doi: 10.3934/jgm.2017008

[20]

Lekbir Afraites, Abdelghafour Atlas, Fahd Karami, Driss Meskine. Some class of parabolic systems applied to image processing. Discrete & Continuous Dynamical Systems - B, 2016, 21 (6) : 1671-1687. doi: 10.3934/dcdsb.2016017

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]