November  2010, 4(4): 685-691. doi: 10.3934/ipi.2010.4.685

Incomplete data problems in wave equation imaging

1. 

University of Münster, Department of Mathematics and Computer Science, Einsteinstrasse 72, 48159 Münster, Germany

Received  December 2008 Published  September 2010

We study reflection imaging as an incomplete data problem in frequency domain. It turns out that this amounts to inverting the Fourier transform using only frequencies outside some set. By numerical simulations we show the effect of this incompleteness on concrete reconstruction problems. We try to complete the data by analytic continuation. An explicit formula is obtained by an inversion formula for the exponential Radon transform. We discuss the application to medical ultrasound tomography and to seismic imaging. We describe an alternative method based on the presence of reflectors.
Citation: Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems and Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1970.

[2]

N. Bleistein, J. K. Cohen and J. W. Stockwell (Jr.), "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion," Springer, 2001.

[3]

D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation, Ultrasonic Imaging, 14 (1992), 69-85. doi: doi:10.1016/0161-7346(92)90073-5.

[4]

J. Claerbout, "Fundamentals of Geophysical Data Processing," McGraw-Hill ,1976.

[5]

N. Duric et al., Development of ultraound tomography for breast imaging: Technical assessment, Medical Physics, 32 (2005), 1375-1386. doi: doi:10.1118/1.1897463.

[6]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction," SIAM, Philadelphia, 2001.

[7]

F. Natterer, "The Attenuated Radon Transform for Complex Attenuation," Technical Report, Fachbereich Mathematik und Informatik, Universität Münster, 2007.

[8]

F. Natterer, "Ultrasonic Image Reconstruction via Plane Wave Stacking," Technical Report, Fachbereich Mathematik und Informatik, Universität Münster, 2004.

[9]

F. Natterer, "Ultrasound Tomography with Fixed Linear Arrays of Transducers," Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Pisa, Italy, October 2007.

[10]

F. Natterer, Reflectors in wave equation imaging, Wave Motion, 45 (2008), 776-784. doi: doi:10.1016/j.wavemoti.2008.01.001.

[11]

R. G. Novikov, An inversion formula for the attenuated $X$-ray transform, Ark. Mat., 40 (2002), 145-167. doi: doi:10.1007/BF02384507.

[12]

J. You, Attenuated Radon transform with complex coefficients, Inverse Problems, 23 (2007), 1963-1971. doi: doi:10.1088/0266-5611/23/5/010.

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," Dover Publications, Inc., New York, 1970.

[2]

N. Bleistein, J. K. Cohen and J. W. Stockwell (Jr.), "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion," Springer, 2001.

[3]

D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation, Ultrasonic Imaging, 14 (1992), 69-85. doi: doi:10.1016/0161-7346(92)90073-5.

[4]

J. Claerbout, "Fundamentals of Geophysical Data Processing," McGraw-Hill ,1976.

[5]

N. Duric et al., Development of ultraound tomography for breast imaging: Technical assessment, Medical Physics, 32 (2005), 1375-1386. doi: doi:10.1118/1.1897463.

[6]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction," SIAM, Philadelphia, 2001.

[7]

F. Natterer, "The Attenuated Radon Transform for Complex Attenuation," Technical Report, Fachbereich Mathematik und Informatik, Universität Münster, 2007.

[8]

F. Natterer, "Ultrasonic Image Reconstruction via Plane Wave Stacking," Technical Report, Fachbereich Mathematik und Informatik, Universität Münster, 2004.

[9]

F. Natterer, "Ultrasound Tomography with Fixed Linear Arrays of Transducers," Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), Pisa, Italy, October 2007.

[10]

F. Natterer, Reflectors in wave equation imaging, Wave Motion, 45 (2008), 776-784. doi: doi:10.1016/j.wavemoti.2008.01.001.

[11]

R. G. Novikov, An inversion formula for the attenuated $X$-ray transform, Ark. Mat., 40 (2002), 145-167. doi: doi:10.1007/BF02384507.

[12]

J. You, Attenuated Radon transform with complex coefficients, Inverse Problems, 23 (2007), 1963-1971. doi: doi:10.1088/0266-5611/23/5/010.

[1]

Raluca Felea, Venkateswaran P. Krishnan, Clifford J. Nolan, Eric Todd Quinto. Common midpoint versus common offset acquisition geometry in seismic imaging. Inverse Problems and Imaging, 2016, 10 (1) : 87-102. doi: 10.3934/ipi.2016.10.87

[2]

Simon Hubmer, Alexander Ploier, Ronny Ramlau, Peter Fosodeder, Sandrine van Frank. A mathematical approach towards THz tomography for non-destructive imaging. Inverse Problems and Imaging, 2022, 16 (1) : 68-88. doi: 10.3934/ipi.2021041

[3]

Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems and Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665

[4]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems and Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[5]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems and Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[6]

Laurent Bourgeois, Jean-François Fritsch, Arnaud Recoquillay. Imaging junctions of waveguides. Inverse Problems and Imaging, 2021, 15 (2) : 285-314. doi: 10.3934/ipi.2020065

[7]

Shenglong Hu, Zheng-Hai Huang, Hong-Yan Ni, Liqun Qi. Positive definiteness of Diffusion Kurtosis Imaging. Inverse Problems and Imaging, 2012, 6 (1) : 57-75. doi: 10.3934/ipi.2012.6.57

[8]

Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems and Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189

[9]

Josselin Garnier. Ghost imaging in the random paraxial regime. Inverse Problems and Imaging, 2016, 10 (2) : 409-432. doi: 10.3934/ipi.2016006

[10]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems and Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[11]

Liliana Borcea, Dinh-Liem Nguyen. Imaging with electromagnetic waves in terminating waveguides. Inverse Problems and Imaging, 2016, 10 (4) : 915-941. doi: 10.3934/ipi.2016027

[12]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems and Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[13]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems and Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[14]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems and Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[15]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete and Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[16]

Jingzhi Li, Hongyu Liu, Hongpeng Sun, Jun Zou. Imaging acoustic obstacles by singular and hypersingular point sources. Inverse Problems and Imaging, 2013, 7 (2) : 545-563. doi: 10.3934/ipi.2013.7.545

[17]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems and Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[18]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems and Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[19]

Romina Gaburro, Clifford J Nolan. Enhanced imaging from multiply scattered waves. Inverse Problems and Imaging, 2008, 2 (2) : 225-250. doi: 10.3934/ipi.2008.2.225

[20]

Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems and Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733

2020 Impact Factor: 1.639

Metrics

  • PDF downloads (104)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]