November  2010, 4(4): 685-691. doi: 10.3934/ipi.2010.4.685

Incomplete data problems in wave equation imaging

1. 

University of Münster, Department of Mathematics and Computer Science, Einsteinstrasse 72, 48159 Münster, Germany

Received  December 2008 Published  September 2010

We study reflection imaging as an incomplete data problem in frequency domain. It turns out that this amounts to inverting the Fourier transform using only frequencies outside some set. By numerical simulations we show the effect of this incompleteness on concrete reconstruction problems. We try to complete the data by analytic continuation. An explicit formula is obtained by an inversion formula for the exponential Radon transform. We discuss the application to medical ultrasound tomography and to seismic imaging. We describe an alternative method based on the presence of reflectors.
Citation: Frank Natterer. Incomplete data problems in wave equation imaging. Inverse Problems & Imaging, 2010, 4 (4) : 685-691. doi: 10.3934/ipi.2010.4.685
References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", Dover Publications, (1970). Google Scholar

[2]

N. Bleistein, J. K. Cohen and J. W. Stockwell (Jr.), "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,", Springer, (2001). Google Scholar

[3]

D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation,, Ultrasonic Imaging, 14 (1992), 69. doi: doi:10.1016/0161-7346(92)90073-5. Google Scholar

[4]

J. Claerbout, "Fundamentals of Geophysical Data Processing,", McGraw-Hill, (). Google Scholar

[5]

N. Duric et al., Development of ultraound tomography for breast imaging: Technical assessment,, Medical Physics, 32 (2005), 1375. doi: doi:10.1118/1.1897463. Google Scholar

[6]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001). Google Scholar

[7]

F. Natterer, "The Attenuated Radon Transform for Complex Attenuation,", Technical Report, (2007). Google Scholar

[8]

F. Natterer, "Ultrasonic Image Reconstruction via Plane Wave Stacking,", Technical Report, (2004). Google Scholar

[9]

F. Natterer, "Ultrasound Tomography with Fixed Linear Arrays of Transducers,", Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), (2007). Google Scholar

[10]

F. Natterer, Reflectors in wave equation imaging,, Wave Motion, 45 (2008), 776. doi: doi:10.1016/j.wavemoti.2008.01.001. Google Scholar

[11]

R. G. Novikov, An inversion formula for the attenuated $X$-ray transform,, Ark. Mat., 40 (2002), 145. doi: doi:10.1007/BF02384507. Google Scholar

[12]

J. You, Attenuated Radon transform with complex coefficients,, Inverse Problems, 23 (2007), 1963. doi: doi:10.1088/0266-5611/23/5/010. Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", Dover Publications, (1970). Google Scholar

[2]

N. Bleistein, J. K. Cohen and J. W. Stockwell (Jr.), "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,", Springer, (2001). Google Scholar

[3]

D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation,, Ultrasonic Imaging, 14 (1992), 69. doi: doi:10.1016/0161-7346(92)90073-5. Google Scholar

[4]

J. Claerbout, "Fundamentals of Geophysical Data Processing,", McGraw-Hill, (). Google Scholar

[5]

N. Duric et al., Development of ultraound tomography for breast imaging: Technical assessment,, Medical Physics, 32 (2005), 1375. doi: doi:10.1118/1.1897463. Google Scholar

[6]

F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001). Google Scholar

[7]

F. Natterer, "The Attenuated Radon Transform for Complex Attenuation,", Technical Report, (2007). Google Scholar

[8]

F. Natterer, "Ultrasonic Image Reconstruction via Plane Wave Stacking,", Technical Report, (2004). Google Scholar

[9]

F. Natterer, "Ultrasound Tomography with Fixed Linear Arrays of Transducers,", Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), (2007). Google Scholar

[10]

F. Natterer, Reflectors in wave equation imaging,, Wave Motion, 45 (2008), 776. doi: doi:10.1016/j.wavemoti.2008.01.001. Google Scholar

[11]

R. G. Novikov, An inversion formula for the attenuated $X$-ray transform,, Ark. Mat., 40 (2002), 145. doi: doi:10.1007/BF02384507. Google Scholar

[12]

J. You, Attenuated Radon transform with complex coefficients,, Inverse Problems, 23 (2007), 1963. doi: doi:10.1088/0266-5611/23/5/010. Google Scholar

[1]

Raluca Felea, Venkateswaran P. Krishnan, Clifford J. Nolan, Eric Todd Quinto. Common midpoint versus common offset acquisition geometry in seismic imaging. Inverse Problems & Imaging, 2016, 10 (1) : 87-102. doi: 10.3934/ipi.2016.10.87

[2]

Peter Kuchment, Leonid Kunyansky. Synthetic focusing in ultrasound modulated tomography. Inverse Problems & Imaging, 2010, 4 (4) : 665-673. doi: 10.3934/ipi.2010.4.665

[3]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[4]

Guillaume Bal, Olivier Pinaud, Lenya Ryzhik. On the stability of some imaging functionals. Inverse Problems & Imaging, 2016, 10 (3) : 585-616. doi: 10.3934/ipi.2016013

[5]

Shenglong Hu, Zheng-Hai Huang, Hong-Yan Ni, Liqun Qi. Positive definiteness of Diffusion Kurtosis Imaging. Inverse Problems & Imaging, 2012, 6 (1) : 57-75. doi: 10.3934/ipi.2012.6.57

[6]

Peijun Li, Yuliang Wang. Near-field imaging of obstacles. Inverse Problems & Imaging, 2015, 9 (1) : 189-210. doi: 10.3934/ipi.2015.9.189

[7]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[8]

Josselin Garnier. Ghost imaging in the random paraxial regime. Inverse Problems & Imaging, 2016, 10 (2) : 409-432. doi: 10.3934/ipi.2016006

[9]

Liliana Borcea, Dinh-Liem Nguyen. Imaging with electromagnetic waves in terminating waveguides. Inverse Problems & Imaging, 2016, 10 (4) : 915-941. doi: 10.3934/ipi.2016027

[10]

Simon Hubmer, Andreas Neubauer, Ronny Ramlau, Henning U. Voss. On the parameter estimation problem of magnetic resonance advection imaging. Inverse Problems & Imaging, 2018, 12 (1) : 175-204. doi: 10.3934/ipi.2018007

[11]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[12]

Jingzhi Li, Hongyu Liu, Hongpeng Sun, Jun Zou. Imaging acoustic obstacles by singular and hypersingular point sources. Inverse Problems & Imaging, 2013, 7 (2) : 545-563. doi: 10.3934/ipi.2013.7.545

[13]

M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219

[14]

Andrew Homan. Multi-wave imaging in attenuating media. Inverse Problems & Imaging, 2013, 7 (4) : 1235-1250. doi: 10.3934/ipi.2013.7.1235

[15]

Romina Gaburro, Clifford J Nolan. Enhanced imaging from multiply scattered waves. Inverse Problems & Imaging, 2008, 2 (2) : 225-250. doi: 10.3934/ipi.2008.2.225

[16]

Nicolas Lermé, François Malgouyres, Dominique Hamoir, Emmanuelle Thouin. Bayesian image restoration for mosaic active imaging. Inverse Problems & Imaging, 2014, 8 (3) : 733-760. doi: 10.3934/ipi.2014.8.733

[17]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, Jari P. Kaipio, Erkki Somersalo. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part II: Stochastic extension of the boundary map. Inverse Problems & Imaging, 2015, 9 (3) : 767-789. doi: 10.3934/ipi.2015.9.767

[18]

Daniela Calvetti, Paul J. Hadwin, Janne M. J. Huttunen, David Isaacson, Jari P. Kaipio, Debra McGivney, Erkki Somersalo, Joseph Volzer. Artificial boundary conditions and domain truncation in electrical impedance tomography. Part I: Theory and preliminary results. Inverse Problems & Imaging, 2015, 9 (3) : 749-766. doi: 10.3934/ipi.2015.9.749

[19]

Habib Ammari, Josselin Garnier, Vincent Jugnon. Detection, reconstruction, and characterization algorithms from noisy data in multistatic wave imaging. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 389-417. doi: 10.3934/dcdss.2015.8.389

[20]

Venkateswaran P. Krishnan, Eric Todd Quinto. Microlocal aspects of common offset synthetic aperture radar imaging. Inverse Problems & Imaging, 2011, 5 (3) : 659-674. doi: 10.3934/ipi.2011.5.659

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]