-
Previous Article
Remarks on the general Funk transform and thermoacoustic tomography
- IPI Home
- This Issue
-
Next Article
Diffusion reconstruction from very noisy tomographic data
Incomplete data problems in wave equation imaging
1. | University of Münster, Department of Mathematics and Computer Science, Einsteinstrasse 72, 48159 Münster, Germany |
References:
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", Dover Publications, (1970). Google Scholar |
[2] |
N. Bleistein, J. K. Cohen and J. W. Stockwell (Jr.), "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,", Springer, (2001). Google Scholar |
[3] |
D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation,, Ultrasonic Imaging, 14 (1992), 69.
doi: doi:10.1016/0161-7346(92)90073-5. |
[4] |
J. Claerbout, "Fundamentals of Geophysical Data Processing,", McGraw-Hill, (). Google Scholar |
[5] |
N. Duric et al., Development of ultraound tomography for breast imaging: Technical assessment,, Medical Physics, 32 (2005), 1375.
doi: doi:10.1118/1.1897463. |
[6] |
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001). Google Scholar |
[7] |
F. Natterer, "The Attenuated Radon Transform for Complex Attenuation,", Technical Report, (2007). Google Scholar |
[8] |
F. Natterer, "Ultrasonic Image Reconstruction via Plane Wave Stacking,", Technical Report, (2004). Google Scholar |
[9] |
F. Natterer, "Ultrasound Tomography with Fixed Linear Arrays of Transducers,", Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), (2007). Google Scholar |
[10] |
F. Natterer, Reflectors in wave equation imaging,, Wave Motion, 45 (2008), 776.
doi: doi:10.1016/j.wavemoti.2008.01.001. |
[11] |
R. G. Novikov, An inversion formula for the attenuated $X$-ray transform,, Ark. Mat., 40 (2002), 145.
doi: doi:10.1007/BF02384507. |
[12] |
J. You, Attenuated Radon transform with complex coefficients,, Inverse Problems, 23 (2007), 1963.
doi: doi:10.1088/0266-5611/23/5/010. |
show all references
References:
[1] |
M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions,", Dover Publications, (1970). Google Scholar |
[2] |
N. Bleistein, J. K. Cohen and J. W. Stockwell (Jr.), "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,", Springer, (2001). Google Scholar |
[3] |
D. T. Borup, S. A. Johnson, W. W. Kim and M. J. Berggren, Nonperturbative diffraction tomography via Gauss-Newton iteration applied to the scattering integral equation,, Ultrasonic Imaging, 14 (1992), 69.
doi: doi:10.1016/0161-7346(92)90073-5. |
[4] |
J. Claerbout, "Fundamentals of Geophysical Data Processing,", McGraw-Hill, (). Google Scholar |
[5] |
N. Duric et al., Development of ultraound tomography for breast imaging: Technical assessment,, Medical Physics, 32 (2005), 1375.
doi: doi:10.1118/1.1897463. |
[6] |
F. Natterer and F. Wübbeling, "Mathematical Methods in Image Reconstruction,", SIAM, (2001). Google Scholar |
[7] |
F. Natterer, "The Attenuated Radon Transform for Complex Attenuation,", Technical Report, (2007). Google Scholar |
[8] |
F. Natterer, "Ultrasonic Image Reconstruction via Plane Wave Stacking,", Technical Report, (2004). Google Scholar |
[9] |
F. Natterer, "Ultrasound Tomography with Fixed Linear Arrays of Transducers,", Proceedings of the Interdisciplinary Workshop on Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), (2007). Google Scholar |
[10] |
F. Natterer, Reflectors in wave equation imaging,, Wave Motion, 45 (2008), 776.
doi: doi:10.1016/j.wavemoti.2008.01.001. |
[11] |
R. G. Novikov, An inversion formula for the attenuated $X$-ray transform,, Ark. Mat., 40 (2002), 145.
doi: doi:10.1007/BF02384507. |
[12] |
J. You, Attenuated Radon transform with complex coefficients,, Inverse Problems, 23 (2007), 1963.
doi: doi:10.1088/0266-5611/23/5/010. |
[1] |
Alexander Dabrowski, Ahcene Ghandriche, Mourad Sini. Mathematical analysis of the acoustic imaging modality using bubbles as contrast agents at nearly resonating frequencies. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021005 |
[2] |
Weihong Guo, Yifei Lou, Jing Qin, Ming Yan. IPI special issue on "mathematical/statistical approaches in data science" in the Inverse Problem and Imaging. Inverse Problems & Imaging, 2021, 15 (1) : I-I. doi: 10.3934/ipi.2021007 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]