-
Previous Article
Numerical recovering of a density by the BC-method
- IPI Home
- This Issue
-
Next Article
Incomplete data problems in wave equation imaging
Remarks on the general Funk transform and thermoacoustic tomography
1. | School of Mathematical Sciences, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel |
References:
[1] |
M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.
doi: doi:10.1016/j.jfa.2007.03.022. |
[2] |
J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.
|
[3] |
D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.
doi: doi:10.1088/0266-5611/22/3/012. |
[4] |
P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278.
doi: doi:10.1007/BF01456044. |
[5] |
V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.
|
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).
|
[7] |
M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.
|
[8] |
R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.
|
[9] |
F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).
|
[10] |
S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.
|
[11] |
S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).
|
[12] |
D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270.
doi: doi:10.1023/A:1013126507543. |
[13] |
D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254.
doi: doi:10.1023/B:PRIT.0000044261.87490.05. |
[14] |
E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.
|
[15] |
H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781.
doi: doi:10.1088/0266-5611/20/3/008. |
show all references
References:
[1] |
M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.
doi: doi:10.1016/j.jfa.2007.03.022. |
[2] |
J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.
|
[3] |
D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.
doi: doi:10.1088/0266-5611/22/3/012. |
[4] |
P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278.
doi: doi:10.1007/BF01456044. |
[5] |
V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.
|
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).
|
[7] |
M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.
|
[8] |
R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.
|
[9] |
F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).
|
[10] |
S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.
|
[11] |
S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).
|
[12] |
D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270.
doi: doi:10.1023/A:1013126507543. |
[13] |
D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254.
doi: doi:10.1023/B:PRIT.0000044261.87490.05. |
[14] |
E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.
|
[15] |
H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781.
doi: doi:10.1088/0266-5611/20/3/008. |
[1] |
Mark Agranovsky, David Finch, Peter Kuchment. Range conditions for a spherical mean transform. Inverse Problems & Imaging, 2009, 3 (3) : 373-382. doi: 10.3934/ipi.2009.3.373 |
[2] |
Figen Özpinar, Fethi Bin Muhammad Belgacem. The discrete homotopy perturbation Sumudu transform method for solving partial difference equations. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 615-624. doi: 10.3934/dcdss.2019039 |
[3] |
Gareth Ainsworth, Yernat M. Assylbekov. On the range of the attenuated magnetic ray transform for connections and Higgs fields. Inverse Problems & Imaging, 2015, 9 (2) : 317-335. doi: 10.3934/ipi.2015.9.317 |
[4] |
Linh V. Nguyen. A family of inversion formulas in thermoacoustic tomography. Inverse Problems & Imaging, 2009, 3 (4) : 649-675. doi: 10.3934/ipi.2009.3.649 |
[5] |
Daniel Fusca. The Madelung transform as a momentum map. Journal of Geometric Mechanics, 2017, 9 (2) : 157-165. doi: 10.3934/jgm.2017006 |
[6] |
Doǧan Çömez. The modulated ergodic Hilbert transform. Discrete & Continuous Dynamical Systems - S, 2009, 2 (2) : 325-336. doi: 10.3934/dcdss.2009.2.325 |
[7] |
Sean Holman, Plamen Stefanov. The weighted Doppler transform. Inverse Problems & Imaging, 2010, 4 (1) : 111-130. doi: 10.3934/ipi.2010.4.111 |
[8] |
James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems & Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013 |
[9] |
C E Yarman, B Yazıcı. A new exact inversion method for exponential Radon transform using the harmonic analysis of the Euclidean motion group. Inverse Problems & Imaging, 2007, 1 (3) : 457-479. doi: 10.3934/ipi.2007.1.457 |
[10] |
Leonid Kunyansky. Fast reconstruction algorithms for the thermoacoustic tomography in certain domains with cylindrical or spherical symmetries. Inverse Problems & Imaging, 2012, 6 (1) : 111-131. doi: 10.3934/ipi.2012.6.111 |
[11] |
Simon Gindikin. A remark on the weighted Radon transform on the plane. Inverse Problems & Imaging, 2010, 4 (4) : 649-653. doi: 10.3934/ipi.2010.4.649 |
[12] |
Sebastian Reich, Seoleun Shin. On the consistency of ensemble transform filter formulations. Journal of Computational Dynamics, 2014, 1 (1) : 177-189. doi: 10.3934/jcd.2014.1.177 |
[13] |
Gareth Ainsworth. The attenuated magnetic ray transform on surfaces. Inverse Problems & Imaging, 2013, 7 (1) : 27-46. doi: 10.3934/ipi.2013.7.27 |
[14] |
Linh V. Nguyen. Spherical mean transform: A PDE approach. Inverse Problems & Imaging, 2013, 7 (1) : 243-252. doi: 10.3934/ipi.2013.7.243 |
[15] |
Gareth Ainsworth. The magnetic ray transform on Anosov surfaces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1801-1816. doi: 10.3934/dcds.2015.35.1801 |
[16] |
Fahd Jarad, Thabet Abdeljawad. Generalized fractional derivatives and Laplace transform. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 709-722. doi: 10.3934/dcdss.2020039 |
[17] |
Melody Alsaker, Sarah Jane Hamilton, Andreas Hauptmann. A direct D-bar method for partial boundary data electrical impedance tomography with a priori information. Inverse Problems & Imaging, 2017, 11 (3) : 427-454. doi: 10.3934/ipi.2017020 |
[18] |
Dan Jane, Gabriel P. Paternain. On the injectivity of the X-ray transform for Anosov thermostats. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 471-487. doi: 10.3934/dcds.2009.24.471 |
[19] |
Ingrid Beltiţă, Anders Melin. The quadratic contribution to the backscattering transform in the rotation invariant case. Inverse Problems & Imaging, 2010, 4 (4) : 599-618. doi: 10.3934/ipi.2010.4.599 |
[20] |
Yiran Wang. Parametrices for the light ray transform on Minkowski spacetime. Inverse Problems & Imaging, 2018, 12 (1) : 229-237. doi: 10.3934/ipi.2018009 |
2018 Impact Factor: 1.469
Tools
Metrics
Other articles
by authors
[Back to Top]