November  2010, 4(4): 693-702. doi: 10.3934/ipi.2010.4.693

Remarks on the general Funk transform and thermoacoustic tomography

1. 

School of Mathematical Sciences, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel

Received  June 2009 Published  September 2010

We discuss properties of a generalized Minkowski-Funk transform defined for a family of hypersurfaces. We prove two-side estimates and show that the range conditions can be written in terms of the reciprocal Funk transform. Some applications to the spherical mean transform are considered.
Citation: Victor Palamodov. Remarks on the general Funk transform and thermoacoustic tomography. Inverse Problems & Imaging, 2010, 4 (4) : 693-702. doi: 10.3934/ipi.2010.4.693
References:
[1]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.  doi: doi:10.1016/j.jfa.2007.03.022.  Google Scholar

[2]

J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.   Google Scholar

[3]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.  doi: doi:10.1088/0266-5611/22/3/012.  Google Scholar

[4]

P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278.  doi: doi:10.1007/BF01456044.  Google Scholar

[5]

V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.   Google Scholar

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).   Google Scholar

[7]

M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.   Google Scholar

[8]

R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.   Google Scholar

[9]

F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).   Google Scholar

[10]

S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.   Google Scholar

[11]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).   Google Scholar

[12]

D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270.  doi: doi:10.1023/A:1013126507543.  Google Scholar

[13]

D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254.  doi: doi:10.1023/B:PRIT.0000044261.87490.05.  Google Scholar

[14]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.   Google Scholar

[15]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781.  doi: doi:10.1088/0266-5611/20/3/008.  Google Scholar

show all references

References:
[1]

M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.  doi: doi:10.1016/j.jfa.2007.03.022.  Google Scholar

[2]

J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.   Google Scholar

[3]

D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.  doi: doi:10.1088/0266-5611/22/3/012.  Google Scholar

[4]

P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278.  doi: doi:10.1007/BF01456044.  Google Scholar

[5]

V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.   Google Scholar

[6]

L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).   Google Scholar

[7]

M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.   Google Scholar

[8]

R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.   Google Scholar

[9]

F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).   Google Scholar

[10]

S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.   Google Scholar

[11]

S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).   Google Scholar

[12]

D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270.  doi: doi:10.1023/A:1013126507543.  Google Scholar

[13]

D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254.  doi: doi:10.1023/B:PRIT.0000044261.87490.05.  Google Scholar

[14]

E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.   Google Scholar

[15]

H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781.  doi: doi:10.1088/0266-5611/20/3/008.  Google Scholar

[1]

Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139

[2]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[3]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[4]

Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020176

[5]

Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001

[6]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[7]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012

[8]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[9]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[10]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[11]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[12]

Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328

[13]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[14]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[15]

Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477

[16]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[17]

Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020053

[18]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[19]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[20]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (66)
  • HTML views (0)
  • Cited by (20)

Other articles
by authors

[Back to Top]