-
Previous Article
Numerical recovering of a density by the BC-method
- IPI Home
- This Issue
-
Next Article
Incomplete data problems in wave equation imaging
Remarks on the general Funk transform and thermoacoustic tomography
1. | School of Mathematical Sciences, Tel Aviv University, Ramat Aviv Tel Aviv 69978, Israel |
References:
[1] |
M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.
doi: doi:10.1016/j.jfa.2007.03.022. |
[2] |
J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.
|
[3] |
D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.
doi: doi:10.1088/0266-5611/22/3/012. |
[4] |
P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278.
doi: doi:10.1007/BF01456044. |
[5] |
V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.
|
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).
|
[7] |
M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.
|
[8] |
R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.
|
[9] |
F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).
|
[10] |
S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.
|
[11] |
S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).
|
[12] |
D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270.
doi: doi:10.1023/A:1013126507543. |
[13] |
D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254.
doi: doi:10.1023/B:PRIT.0000044261.87490.05. |
[14] |
E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.
|
[15] |
H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781.
doi: doi:10.1088/0266-5611/20/3/008. |
show all references
References:
[1] |
M. Agranovsky, P. Kuchment and E. T. Quinto, Range descriptions for the spherical mean Radon transform,, J. Funct. Anal., 248 (2007), 344.
doi: doi:10.1016/j.jfa.2007.03.022. |
[2] |
J. Boman, On stable inversion of the attenuated Radon transform with half data,, in, (2006), 19.
|
[3] |
D. Finch and Rakesh, The range of the spherical mean value operator for functions supported in a ball,, Inverse Problems, 22 (2006), 923.
doi: doi:10.1088/0266-5611/22/3/012. |
[4] |
P. Funk, Über Flächen mit lauter geschlossenen geodätischen Linien,, Math. Ann., 74 (1913), 278.
doi: doi:10.1007/BF01456044. |
[5] |
V. Guillemin, On some results of Gelfand in integral geometry,, in, 43 (1985), 149.
|
[6] |
L. Hörmander, "The Analysis of Linear Partial Differential Operators IV. Fourier Integral Operators,", Springer, (1985).
|
[7] |
M. M. Lavrent'ev and A. L. Buhgeim, A certain class of problems of integral geometry,, Dokl. Akad. Nauk SSSR, 211 (1973), 38.
|
[8] |
R. G. Mukhometov, On a problem of integral geometry on the plane,, in, 180 (1978), 30.
|
[9] |
F. Natterer, "The Mathematics of Computerized Tomography,", B.G.Teubner, (1986).
|
[10] |
S. K. Patch, Moment conditions indirectly improve image quality,, in, (2001), 193.
|
[11] |
S. K. Patch and O. Scherzer, Photo- and thermo-acoustic imaging,, Inverse Problems, 23 (2007).
|
[12] |
D. A. Popov, The generalized Radon transform on the plane, its inversion, and the Cavalieri conditions,, Funct. Anal. Appl., 35 (2001), 270.
doi: doi:10.1023/A:1013126507543. |
[13] |
D. A. Popov and D. V. Sushko, Image restoration in optical-acoustic tomography,, Probl. Inf. Transm., 40 (2004), 254.
doi: doi:10.1023/B:PRIT.0000044261.87490.05. |
[14] |
E. T. Quinto, The dependence of the generalized Radon transform on defining measures,, Trans. Amer. Math. Soc., 257 (1980), 331.
|
[15] |
H. Rullgård, Stability of the inverse problem for the attenuated Radon transform with 180 $^\circ$ data,, Inverse Problems, 20 (2004), 781.
doi: doi:10.1088/0266-5611/20/3/008. |
[1] |
Bing Yu, Lei Zhang. Global optimization-based dimer method for finding saddle points. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 741-753. doi: 10.3934/dcdsb.2020139 |
[2] |
João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138 |
[3] |
Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327 |
[4] |
Manxue You, Shengjie Li. Perturbation of Image and conjugate duality for vector optimization. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020176 |
[5] |
Fabian Ziltener. Note on coisotropic Floer homology and leafwise fixed points. Electronic Research Archive, , () : -. doi: 10.3934/era.2021001 |
[6] |
Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020169 |
[7] |
Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 0: 331-348. doi: 10.3934/jmd.2020012 |
[8] |
Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072 |
[9] |
Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073 |
[10] |
Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264 |
[11] |
Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018 |
[12] |
Jason Murphy, Kenji Nakanishi. Failure of scattering to solitary waves for long-range nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1507-1517. doi: 10.3934/dcds.2020328 |
[13] |
Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020047 |
[14] |
Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056 |
[15] |
Neil S. Trudinger, Xu-Jia Wang. Quasilinear elliptic equations with signed measure. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 477-494. doi: 10.3934/dcds.2009.23.477 |
[16] |
Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073 |
[17] |
Arthur Fleig, Lars Grüne. Strict dissipativity analysis for classes of optimal control problems involving probability density functions. Mathematical Control & Related Fields, 2020 doi: 10.3934/mcrf.2020053 |
[18] |
Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020377 |
[19] |
Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025 |
[20] |
Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126 |
2019 Impact Factor: 1.373
Tools
Metrics
Other articles
by authors
[Back to Top]