November  2010, 4(4): 713-720. doi: 10.3934/ipi.2010.4.713

X-ray transform on Damek-Ricci spaces

1. 

Laboratoire J.A. Dieudonné, Université de Nice, Parc Valrose, 06108 Nice cedex 2, France

Received  December 2008 Revised  May 2009 Published  September 2010

Damek-Ricci spaces, also called harmonic $NA$ groups, make up a large class of harmonic Riemannian manifolds including all hyperbolic spaces. We prove here an inversion formula and a support theorem for the X-ray transform, i.e. integration along geodesics, on those spaces.
   Using suitably chosen totally geodesic submanifolds we reduce the problems to similar questions on low-dimensional hyperbolic spaces.
Citation: François Rouvière. X-ray transform on Damek-Ricci spaces. Inverse Problems & Imaging, 2010, 4 (4) : 713-720. doi: 10.3934/ipi.2010.4.713
References:
[1]

M. Cowling, A. Dooley, A. Korányi and F. Ricci, $H$-type groups and Iwasawa decompositions,, Adv. Math., 87 (1991), 1.  doi: doi:10.1016/0001-8708(91)90060-K.  Google Scholar

[2]

M. Cowling, A. Dooley, A. Korányi and F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type,, J. Geom. Anal., 8 (1998), 199.   Google Scholar

[3]

E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces,, Bull. Amer. Math. Soc., 27 (1992), 139.  doi: doi:10.1090/S0273-0979-1992-00293-8.  Google Scholar

[4]

E. Damek and F. Ricci, Harmonic analysis on solvable extensions of $H$-type groups,, J. Geom. Anal., 2 (1992), 213.   Google Scholar

[5]

S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces,", Academic Press, (1978).   Google Scholar

[6]

S. Helgason, "The Radon Transform," second edition,, Birkhäuser, (1999).   Google Scholar

[7]

S. Helgason, The Abel, Fourier and Radon transforms on symmetric spaces,, Indag. Math., 16 (2005), 531.   Google Scholar

[8]

F. Rouvière, Espaces de Damek-Ricci, géométrie et analyse,, Sémin. Congr., 7 (2003), 45.   Google Scholar

[9]

, revised version of [8] at, \url{http://math.unice.fr/ frou/recherche/Damek-Ricci.pdf}, ().   Google Scholar

[10]

F. Rouvière, Transformation aux rayons X sur un espace symétrique,, C. R. Math. Acad. Sci. Paris, 342 (2006), 1.   Google Scholar

show all references

References:
[1]

M. Cowling, A. Dooley, A. Korányi and F. Ricci, $H$-type groups and Iwasawa decompositions,, Adv. Math., 87 (1991), 1.  doi: doi:10.1016/0001-8708(91)90060-K.  Google Scholar

[2]

M. Cowling, A. Dooley, A. Korányi and F. Ricci, An approach to symmetric spaces of rank one via groups of Heisenberg type,, J. Geom. Anal., 8 (1998), 199.   Google Scholar

[3]

E. Damek and F. Ricci, A class of nonsymmetric harmonic Riemannian spaces,, Bull. Amer. Math. Soc., 27 (1992), 139.  doi: doi:10.1090/S0273-0979-1992-00293-8.  Google Scholar

[4]

E. Damek and F. Ricci, Harmonic analysis on solvable extensions of $H$-type groups,, J. Geom. Anal., 2 (1992), 213.   Google Scholar

[5]

S. Helgason, "Differential Geometry, Lie Groups and Symmetric Spaces,", Academic Press, (1978).   Google Scholar

[6]

S. Helgason, "The Radon Transform," second edition,, Birkhäuser, (1999).   Google Scholar

[7]

S. Helgason, The Abel, Fourier and Radon transforms on symmetric spaces,, Indag. Math., 16 (2005), 531.   Google Scholar

[8]

F. Rouvière, Espaces de Damek-Ricci, géométrie et analyse,, Sémin. Congr., 7 (2003), 45.   Google Scholar

[9]

, revised version of [8] at, \url{http://math.unice.fr/ frou/recherche/Damek-Ricci.pdf}, ().   Google Scholar

[10]

F. Rouvière, Transformation aux rayons X sur un espace symétrique,, C. R. Math. Acad. Sci. Paris, 342 (2006), 1.   Google Scholar

[1]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[2]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[3]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[4]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[5]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[6]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[7]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[8]

Russell Ricks. The unique measure of maximal entropy for a compact rank one locally CAT(0) space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 507-523. doi: 10.3934/dcds.2020266

[9]

Azmy S. Ackleh, Nicolas Saintier. Diffusive limit to a selection-mutation equation with small mutation formulated on the space of measures. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1469-1497. doi: 10.3934/dcdsb.2020169

[10]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[11]

Sujit Kumar Samanta, Rakesh Nandi. Analysis of $GI^{[X]}/D$-$MSP/1/\infty$ queue using $RG$-factorization. Journal of Industrial & Management Optimization, 2021, 17 (2) : 549-573. doi: 10.3934/jimo.2019123

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[14]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[17]

Zhiting Ma. Navier-Stokes limit of globally hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (1) : 175-197. doi: 10.3934/krm.2021001

[18]

Soonki Hong, Seonhee Lim. Martin boundary of brownian motion on Gromov hyperbolic metric graphs. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021014

[19]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (43)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]