February  2011, 5(1): 1-17. doi: 10.3934/ipi.2011.5.1

Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations

1. 

Institute of Mathematics Statistics and Physics, Federal University of Rio Grande, Av. Italia km 8, 96201-900 Rio Grande, Brazil

2. 

Fachbereich Mathematik, Johann Wolfgang Goethe Universität, Robert–Mayer–Str. 6–10, 60054 Frankfurt am Main

3. 

Department of Mathematics, Federal University of St. Catarina, P.O. Box 476, 88040-900 Florianópolis

Received  October 2009 Revised  September 2010 Published  February 2011

We investigate iterated Tikhonov methods coupled with a Kaczmarz strategy for obtaining stable solutions of nonlinear systems of ill-posed operator equations. We show that the proposed method is a convergent regularization method. In the case of noisy data we propose a modification, the so called loping iterated Tikhonov-Kaczmarz method, where a sequence of relaxation parameters is introduced and a different stopping rule is used. Convergence analysis for this method is also provided.
Citation: Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2011, 5 (1) : 1-17. doi: 10.3934/ipi.2011.5.1
References:
[1]

A. B. Bakushinsky and M. Y. Kokurin, "Iterative Methods for Approximate Solution of Inverse Problems,", Mathematics and Its Applications, 577 (2004). Google Scholar

[2]

H. T. Banks and K. Kunisch, "Estimation Techniques for Distributed Parameter Systems,", Birkhäuser, (1989). Google Scholar

[3]

J. Baumeister, B. Kaltenbacher and A. Leitão, On Levenberg-Marquardt Kaczmarz methods for regularizing systems of nonlinear ill-posed equations,, Inverse Problems and Imaging, 4 (2010), 335. doi: 10.3934/ipi.2010.4.335. Google Scholar

[4]

B. Blaschke(-Kaltenbacher), "Some Newton Type Methods ror the Solution of Nonlinear Ill-Posed Problems,", Ph.D. thesis, (2005). Google Scholar

[5]

M. Brill and E. Schock, Iterative solution of ill-posed problems: A survey,, in, (1987), 13. Google Scholar

[6]

C. Byrne, Block-iterative algorithms,, Int. Trans. in Operational Research, 16 (2009), 01. Google Scholar

[7]

J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement,, Nonlinear Analysis, 50 (2002), 163. doi: 10.1016/S0362-546X(01)00742-8. Google Scholar

[8]

F. Colonius and K. Kunisch, Stability of parameter estimation in two point boundary value problems,, J. Reine Angew. Math., 370 (1986), 1. doi: 10.1515/crll.1986.370.1. Google Scholar

[9]

A. De Cezaro, M. Haltmeier, A. Leitão and O. Scherzer, On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations,, Appl. Math. Comput., 202 (2008), 596. doi: 10.1016/j.amc.2008.03.010. Google Scholar

[10]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,", Kluwer Academic Publishers, (1996). Google Scholar

[11]

C. W. Groetsch and O. Scherzer, Non-stationary iterated Tikhonov-Morozov method and third-order differential equations for the evaluation of unbounded operators,, Math. Methods Appl. Sci., 23 (2000), 1287. doi: 10.1002/1099-1476(200010)23:15<1287::AID-MMA165>3.0.CO;2-N. Google Scholar

[12]

M. Haltmeier, A. Leitão and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis,, Inverse Probl. Imaging, 1 (2007), 289. Google Scholar

[13]

M. Haltmeier, A. Leitão and E. Resmerita, On regularization methods of EM-Kaczmarz type,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075008. Google Scholar

[14]

M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems,, Numer. Funct. Anal. Optim., 18 (1997), 971. doi: 10.1080/01630569708816804. Google Scholar

[15]

M. Hanke and C. W. Groetsch, Nonstationary iterated Tikhonov regularization,, J. Optim. Theory Appl., 98 (1998), 37. doi: 10.1023/A:1022680629327. Google Scholar

[16]

M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of Landweber iteration for nonlinear ill-posed problems,, Numer. Math., 72 (1995), 21. doi: 10.1007/s002110050158. Google Scholar

[17]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second ed., 127 (2006). Google Scholar

[18]

S. Kaczmarz, Approximate solution of systems of linear equations,, Internat. J. Control, 57 (1993), 1269. doi: 10.1080/00207179308934446. Google Scholar

[19]

B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems,, Inverse Problems, 13 (1997), 729. doi: 10.1088/0266-5611/13/3/012. Google Scholar

[20]

B. Kaltenbacher, A. Neubauer and O. Scherzer, "Iterative Regularization Methods for Nonlinear Ill-Posed Problems,", Radon Series on Computational and Applied Mathematics, 6 (2008). doi: 10.1515/9783110208276. Google Scholar

[21]

S. Kindermann and A. Neubauer, On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization,, Inverse Probl. Imaging, 2 (2008), 291. Google Scholar

[22]

R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems,, Ill posed and inverse problems (book series), 23 (2002), 69. Google Scholar

[23]

L. J. Lardy, A series representation for the generalized inverse of a closed linear operator,, Atti della Accademia Nazionale dei Lincei, 58 (1975), 152. Google Scholar

[24]

S. McCormick, The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert space,, Indiana Univ. Math. J., 26 (1977), 1137. doi: 10.1512/iumj.1977.26.26090. Google Scholar

[25]

V. A. Morozov, "Regularization Methods for Ill-Posed Problems,", CRC Press, (1993). Google Scholar

[26]

F. Natterer, Algorithms in tomography,, in, 63 (1997). Google Scholar

[27]

O. Scherzer, Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems,, Numer. Math., 66 (1993), 259. doi: 10.1007/BF01385697. Google Scholar

[28]

O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems,, Numer. Funct. Anal. Optim., 17 (1996), 197. doi: 10.1080/01630569608816691. Google Scholar

[29]

A. N. Tikhonov and V. Y. Arsenin, "Solutions of Ill-Posed Problems,", John Wiley & Sons, (1977). Google Scholar

show all references

References:
[1]

A. B. Bakushinsky and M. Y. Kokurin, "Iterative Methods for Approximate Solution of Inverse Problems,", Mathematics and Its Applications, 577 (2004). Google Scholar

[2]

H. T. Banks and K. Kunisch, "Estimation Techniques for Distributed Parameter Systems,", Birkhäuser, (1989). Google Scholar

[3]

J. Baumeister, B. Kaltenbacher and A. Leitão, On Levenberg-Marquardt Kaczmarz methods for regularizing systems of nonlinear ill-posed equations,, Inverse Problems and Imaging, 4 (2010), 335. doi: 10.3934/ipi.2010.4.335. Google Scholar

[4]

B. Blaschke(-Kaltenbacher), "Some Newton Type Methods ror the Solution of Nonlinear Ill-Posed Problems,", Ph.D. thesis, (2005). Google Scholar

[5]

M. Brill and E. Schock, Iterative solution of ill-posed problems: A survey,, in, (1987), 13. Google Scholar

[6]

C. Byrne, Block-iterative algorithms,, Int. Trans. in Operational Research, 16 (2009), 01. Google Scholar

[7]

J. Cheng and M. Yamamoto, Identification of convection term in a parabolic equation with a single measurement,, Nonlinear Analysis, 50 (2002), 163. doi: 10.1016/S0362-546X(01)00742-8. Google Scholar

[8]

F. Colonius and K. Kunisch, Stability of parameter estimation in two point boundary value problems,, J. Reine Angew. Math., 370 (1986), 1. doi: 10.1515/crll.1986.370.1. Google Scholar

[9]

A. De Cezaro, M. Haltmeier, A. Leitão and O. Scherzer, On steepest-descent-Kaczmarz methods for regularizing systems of nonlinear ill-posed equations,, Appl. Math. Comput., 202 (2008), 596. doi: 10.1016/j.amc.2008.03.010. Google Scholar

[10]

H. W. Engl, M. Hanke and A. Neubauer, "Regularization of Inverse Problems,", Kluwer Academic Publishers, (1996). Google Scholar

[11]

C. W. Groetsch and O. Scherzer, Non-stationary iterated Tikhonov-Morozov method and third-order differential equations for the evaluation of unbounded operators,, Math. Methods Appl. Sci., 23 (2000), 1287. doi: 10.1002/1099-1476(200010)23:15<1287::AID-MMA165>3.0.CO;2-N. Google Scholar

[12]

M. Haltmeier, A. Leitão and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations. I. Convergence analysis,, Inverse Probl. Imaging, 1 (2007), 289. Google Scholar

[13]

M. Haltmeier, A. Leitão and E. Resmerita, On regularization methods of EM-Kaczmarz type,, Inverse Problems, 25 (2009). doi: 10.1088/0266-5611/25/7/075008. Google Scholar

[14]

M. Hanke, Regularizing properties of a truncated Newton-CG algorithm for nonlinear inverse problems,, Numer. Funct. Anal. Optim., 18 (1997), 971. doi: 10.1080/01630569708816804. Google Scholar

[15]

M. Hanke and C. W. Groetsch, Nonstationary iterated Tikhonov regularization,, J. Optim. Theory Appl., 98 (1998), 37. doi: 10.1023/A:1022680629327. Google Scholar

[16]

M. Hanke, A. Neubauer and O. Scherzer, A convergence analysis of Landweber iteration for nonlinear ill-posed problems,, Numer. Math., 72 (1995), 21. doi: 10.1007/s002110050158. Google Scholar

[17]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second ed., 127 (2006). Google Scholar

[18]

S. Kaczmarz, Approximate solution of systems of linear equations,, Internat. J. Control, 57 (1993), 1269. doi: 10.1080/00207179308934446. Google Scholar

[19]

B. Kaltenbacher, Some Newton-type methods for the regularization of nonlinear ill-posed problems,, Inverse Problems, 13 (1997), 729. doi: 10.1088/0266-5611/13/3/012. Google Scholar

[20]

B. Kaltenbacher, A. Neubauer and O. Scherzer, "Iterative Regularization Methods for Nonlinear Ill-Posed Problems,", Radon Series on Computational and Applied Mathematics, 6 (2008). doi: 10.1515/9783110208276. Google Scholar

[21]

S. Kindermann and A. Neubauer, On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization,, Inverse Probl. Imaging, 2 (2008), 291. Google Scholar

[22]

R. Kowar and O. Scherzer, Convergence analysis of a Landweber-Kaczmarz method for solving nonlinear ill-posed problems,, Ill posed and inverse problems (book series), 23 (2002), 69. Google Scholar

[23]

L. J. Lardy, A series representation for the generalized inverse of a closed linear operator,, Atti della Accademia Nazionale dei Lincei, 58 (1975), 152. Google Scholar

[24]

S. McCormick, The methods of Kaczmarz and row orthogonalization for solving linear equations and least squares problems in Hilbert space,, Indiana Univ. Math. J., 26 (1977), 1137. doi: 10.1512/iumj.1977.26.26090. Google Scholar

[25]

V. A. Morozov, "Regularization Methods for Ill-Posed Problems,", CRC Press, (1993). Google Scholar

[26]

F. Natterer, Algorithms in tomography,, in, 63 (1997). Google Scholar

[27]

O. Scherzer, Convergence rates of iterated Tikhonov regularized solutions of nonlinear ill-posed problems,, Numer. Math., 66 (1993), 259. doi: 10.1007/BF01385697. Google Scholar

[28]

O. Scherzer, A convergence analysis of a method of steepest descent and a two-step algorithm for nonlinear ill-posed problems,, Numer. Funct. Anal. Optim., 17 (1996), 197. doi: 10.1080/01630569608816691. Google Scholar

[29]

A. N. Tikhonov and V. Y. Arsenin, "Solutions of Ill-Posed Problems,", John Wiley & Sons, (1977). Google Scholar

[1]

Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507

[2]

Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335

[3]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[4]

Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289

[5]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[6]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[7]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[8]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[9]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems & Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[10]

Stefan Kindermann, Andreas Neubauer. On the convergence of the quasioptimality criterion for (iterated) Tikhonov regularization. Inverse Problems & Imaging, 2008, 2 (2) : 291-299. doi: 10.3934/ipi.2008.2.291

[11]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[12]

Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009

[13]

Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an ill-posed strongly nonlinear elliptic equation with $p$-Laplace operator and $L^1$-type of nonlinearity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1273-1295. doi: 10.3934/dcdsb.2019016

[14]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[15]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[16]

Zhiyou Wu, Fusheng Bai, Guoquan Li, Yongjian Yang. A new auxiliary function method for systems of nonlinear equations. Journal of Industrial & Management Optimization, 2015, 11 (2) : 345-364. doi: 10.3934/jimo.2015.11.345

[17]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[18]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[19]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

[20]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems & Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (7)

[Back to Top]