February  2011, 5(1): 219-236. doi: 10.3934/ipi.2011.5.219

Structural stability in a minimization problem and applications to conductivity imaging

1. 

Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States

Received  July 2009 Revised  July 2010 Published  February 2011

We consider the problem of minimizing the functional $\int_\Omega a|\nabla u|dx$, with $u$ in some appropriate Banach space and prescribed trace $f$ on the boundary. For $a\in L^2(\Omega)$ and $u$ in the sample space $H^1(\Omega)$, this problem appeared recently in imaging the electrical conductivity of a body when some interior data are available. When $a\in C(\Omega)\cap L^\infty(\Omega)$, the functional has a natural interpretation, which suggests that one should consider the minimization problem in the sample space $BV(\Omega)$. We show the stability of the minimum value with respect to $a$, in a neighborhood of a particular coefficient. In both cases the method of proof provides some convergent minimizing procedures. We also consider the minimization problem for the non-degenerate functional $\int_\Omega a\max\{|\nabla u|,\delta\}dx$, for some $\delta>0$, and prove a stability result. Again, the method of proof constructs a minimizing sequence and we identify sufficient conditions for convergence. We apply the last result to the conductivity problem and show that, under an a posteriori smoothness condition, the method recovers the unknown conductivity.
Citation: M. Zuhair Nashed, Alexandru Tamasan. Structural stability in a minimization problem and applications to conductivity imaging. Inverse Problems & Imaging, 2011, 5 (1) : 219-236. doi: 10.3934/ipi.2011.5.219
References:
[1]

G. Alessandrini, An identification problem for an elliptic equation in two variables,, Ann. Mat. Pura Appl., 145 (1986), 265. doi: 10.1007/BF01790543. Google Scholar

[2]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557. doi: 10.1137/070686408. Google Scholar

[3]

L. C. Evans and M. Gariepy, "Measure Theory and Fine Properties of Functions,", CRC Press, (1992). Google Scholar

[4]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Appl. Math., 69 (2008), 565. doi: 10.1137/080715123. Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998). Google Scholar

[6]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monographs in Mathematics 80, 80 (1984). Google Scholar

[7]

M. L. Joy, A. Nachman, K. F. Hasanov, R. S. Yoon and A. W. Ma, A new approach to current density impedance imaging (CDII),, Proceedings ISMRM, (2004). Google Scholar

[8]

S. Kim, O. Kwon, J. K. Seo and J. R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography,, SIAM J. Math. Anal., 34 (2002), 511. doi: 10.1137/S0036141001391354. Google Scholar

[9]

O. Kwon, J. Y. Lee and and J. R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography,, Inverse Problems, 18 (2002), 1089. doi: 10.1088/0266-5611/18/4/310. Google Scholar

[10]

O. Kwon, E. J. Woo, J. R. Yoon and J. K. Seo, Magnetic resonance electric impedance tomography (MREIT): Simulation study of J-substitution algorithm,, IEEE Trans. Biomed. Eng., 49 (2002), 160. doi: 10.1109/10.979355. Google Scholar

[11]

J. Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions,, Inverse Problems, 20 (2004), 847. doi: 10.1088/0266-5611/20/3/012. Google Scholar

[12]

X. Li, Y. Xu and B. He, Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic Induction (MAT-MI),, IEEE Transactions on Biomedical Engineering, 54 (2007), 323. doi: 10.1109/TBME.2006.883827. Google Scholar

[13]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data,, Inverse Problems, 23 (2007), 2551. doi: 10.1088/0266-5611/23/6/017. Google Scholar

[14]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data,, Inverse Problems, 25 (2009). Google Scholar

[15]

A. Nachman, A. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data,, SIAM J. Appl. Math., 70 (2010), 3342. doi: 10.1137/10079241X. Google Scholar

[16]

M. Z. Nashed and O. Scherzer, Stable approximation of nondifferentiable optimization problems with variational inequalities,, Contemp. Math., 204 (1997), 155. Google Scholar

[17]

M. Z. Nashed and O. Scherzer, Stable approximation of a minimal surface problem with variational inequalitites,, Abstr. and Appl. Anal., 2 (1997), 137. doi: 10.1155/S1085337597000316. Google Scholar

[18]

G. C. Scott, M. L. Joy, R. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance,, IEEE Trans. Med. Imag., 10 (1991), 362. doi: 10.1109/42.97586. Google Scholar

[19]

N. Zhang, "Electrical Impedance Tomography Based on Current Density Imaging,", M. Sc. Thesis, (1992). Google Scholar

[20]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization,", Springer-Verlag, (1985). Google Scholar

[21]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", Springer-Verlag, (1989). Google Scholar

show all references

References:
[1]

G. Alessandrini, An identification problem for an elliptic equation in two variables,, Ann. Mat. Pura Appl., 145 (1986), 265. doi: 10.1007/BF01790543. Google Scholar

[2]

H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation,, SIAM J. Appl. Math., 68 (2008), 1557. doi: 10.1137/070686408. Google Scholar

[3]

L. C. Evans and M. Gariepy, "Measure Theory and Fine Properties of Functions,", CRC Press, (1992). Google Scholar

[4]

B. Gebauer and O. Scherzer, Impedance-acoustic tomography,, SIAM J. Appl. Math., 69 (2008), 565. doi: 10.1137/080715123. Google Scholar

[5]

D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order,", Reprint of the 1998 edition, (1998). Google Scholar

[6]

E. Giusti, "Minimal Surfaces and Functions of Bounded Variation,", Monographs in Mathematics 80, 80 (1984). Google Scholar

[7]

M. L. Joy, A. Nachman, K. F. Hasanov, R. S. Yoon and A. W. Ma, A new approach to current density impedance imaging (CDII),, Proceedings ISMRM, (2004). Google Scholar

[8]

S. Kim, O. Kwon, J. K. Seo and J. R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography,, SIAM J. Math. Anal., 34 (2002), 511. doi: 10.1137/S0036141001391354. Google Scholar

[9]

O. Kwon, J. Y. Lee and and J. R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography,, Inverse Problems, 18 (2002), 1089. doi: 10.1088/0266-5611/18/4/310. Google Scholar

[10]

O. Kwon, E. J. Woo, J. R. Yoon and J. K. Seo, Magnetic resonance electric impedance tomography (MREIT): Simulation study of J-substitution algorithm,, IEEE Trans. Biomed. Eng., 49 (2002), 160. doi: 10.1109/10.979355. Google Scholar

[11]

J. Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions,, Inverse Problems, 20 (2004), 847. doi: 10.1088/0266-5611/20/3/012. Google Scholar

[12]

X. Li, Y. Xu and B. He, Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic Induction (MAT-MI),, IEEE Transactions on Biomedical Engineering, 54 (2007), 323. doi: 10.1109/TBME.2006.883827. Google Scholar

[13]

A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data,, Inverse Problems, 23 (2007), 2551. doi: 10.1088/0266-5611/23/6/017. Google Scholar

[14]

A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data,, Inverse Problems, 25 (2009). Google Scholar

[15]

A. Nachman, A. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data,, SIAM J. Appl. Math., 70 (2010), 3342. doi: 10.1137/10079241X. Google Scholar

[16]

M. Z. Nashed and O. Scherzer, Stable approximation of nondifferentiable optimization problems with variational inequalities,, Contemp. Math., 204 (1997), 155. Google Scholar

[17]

M. Z. Nashed and O. Scherzer, Stable approximation of a minimal surface problem with variational inequalitites,, Abstr. and Appl. Anal., 2 (1997), 137. doi: 10.1155/S1085337597000316. Google Scholar

[18]

G. C. Scott, M. L. Joy, R. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance,, IEEE Trans. Med. Imag., 10 (1991), 362. doi: 10.1109/42.97586. Google Scholar

[19]

N. Zhang, "Electrical Impedance Tomography Based on Current Density Imaging,", M. Sc. Thesis, (1992). Google Scholar

[20]

E. Zeidler, "Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization,", Springer-Verlag, (1985). Google Scholar

[21]

W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation,", Springer-Verlag, (1989). Google Scholar

[1]

Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control & Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011

[2]

Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855

[3]

Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete & Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457

[4]

Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial & Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761

[5]

Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations & Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016

[6]

Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279

[7]

Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078

[8]

Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control & Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289

[9]

Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445

[10]

Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481

[11]

Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure & Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187

[12]

Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109

[13]

Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial & Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063

[14]

Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709

[15]

Daniela Calvetti, Erkki Somersalo. Microlocal sequential regularization in imaging. Inverse Problems & Imaging, 2007, 1 (1) : 1-11. doi: 10.3934/ipi.2007.1.1

[16]

Chao Zhang, Lihe Wang, Shulin Zhou, Yun-Ho Kim. Global gradient estimates for $p(x)$-Laplace equation in non-smooth domains. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2559-2587. doi: 10.3934/cpaa.2014.13.2559

[17]

Philippe Pécol, Pierre Argoul, Stefano Dal Pont, Silvano Erlicher. The non-smooth view for contact dynamics by Michel Frémond extended to the modeling of crowd movements. Discrete & Continuous Dynamical Systems - S, 2013, 6 (2) : 547-565. doi: 10.3934/dcdss.2013.6.547

[18]

Alessandro Colombo, Nicoletta Del Buono, Luciano Lopez, Alessandro Pugliese. Computational techniques to locate crossing/sliding regions and their sets of attraction in non-smooth dynamical systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2911-2934. doi: 10.3934/dcdsb.2018166

[19]

Alexandre Caboussat, Roland Glowinski. A Numerical Method for a Non-Smooth Advection-Diffusion Problem Arising in Sand Mechanics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 161-178. doi: 10.3934/cpaa.2009.8.161

[20]

Laetitia Paoli. A proximal-like algorithm for vibro-impact problems with a non-smooth set of constraints. Conference Publications, 2011, 2011 (Special) : 1186-1195. doi: 10.3934/proc.2011.2011.1186

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (7)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]