-
Previous Article
Augmented Lagrangian method for total variation restoration with non-quadratic fidelity
- IPI Home
- This Issue
-
Next Article
Acoustically invisible gateways
Structural stability in a minimization problem and applications to conductivity imaging
1. | Department of Mathematics, University of Central Florida, Orlando, FL 32816, United States |
References:
[1] |
G. Alessandrini, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl., 145 (1986), 265-295.
doi: 10.1007/BF01790543. |
[2] |
H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573.
doi: 10.1137/070686408. |
[3] |
L. C. Evans and M. Gariepy, "Measure Theory and Fine Properties of Functions," CRC Press, Boca Raton, FL, 1992. |
[4] |
B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), 565-576.
doi: 10.1137/080715123. |
[5] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001. |
[6] |
E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monographs in Mathematics 80, Birkhäuser Verlag, Basel, 1984. |
[7] |
M. L. Joy, A. Nachman, K. F. Hasanov, R. S. Yoon and A. W. Ma, A new approach to current density impedance imaging (CDII), Proceedings ISMRM, #2356 (Kyoto, Japan), 2004. |
[8] |
S. Kim, O. Kwon, J. K. Seo and J. R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM J. Math. Anal., 34 (2002), 511-526.
doi: 10.1137/S0036141001391354. |
[9] |
O. Kwon, J. Y. Lee and and J. R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), 1089-1100.
doi: 10.1088/0266-5611/18/4/310. |
[10] |
O. Kwon, E. J. Woo, J. R. Yoon and J. K. Seo, Magnetic resonance electric impedance tomography (MREIT): Simulation study of J-substitution algorithm, IEEE Trans. Biomed. Eng., 49 (2002), 160-167.
doi: 10.1109/10.979355. |
[11] |
J. Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions, Inverse Problems, 20 (2004), 847-858.
doi: 10.1088/0266-5611/20/3/012. |
[12] |
X. Li, Y. Xu and B. He, Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic Induction (MAT-MI), IEEE Transactions on Biomedical Engineering, 54 (2007), 323-330.
doi: 10.1109/TBME.2006.883827. |
[13] |
A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563.
doi: 10.1088/0266-5611/23/6/017. |
[14] |
A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014, 16pp. |
[15] |
A. Nachman, A. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362.
doi: 10.1137/10079241X. |
[16] |
M. Z. Nashed and O. Scherzer, Stable approximation of nondifferentiable optimization problems with variational inequalities, Contemp. Math., 204 (1997), 155-170. |
[17] |
M. Z. Nashed and O. Scherzer, Stable approximation of a minimal surface problem with variational inequalitites, Abstr. and Appl. Anal., 2 (1997), 137-161.
doi: 10.1155/S1085337597000316. |
[18] |
G. C. Scott, M. L. Joy, R. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Trans. Med. Imag., 10 (1991), 362-374.
doi: 10.1109/42.97586. |
[19] |
N. Zhang, "Electrical Impedance Tomography Based on Current Density Imaging," M. Sc. Thesis, University of Toronto, Canada, 1992. |
[20] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization," Springer-Verlag, New York, 1985. |
[21] |
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Springer-Verlag, New York, 1989. |
show all references
References:
[1] |
G. Alessandrini, An identification problem for an elliptic equation in two variables, Ann. Mat. Pura Appl., 145 (1986), 265-295.
doi: 10.1007/BF01790543. |
[2] |
H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math., 68 (2008), 1557-1573.
doi: 10.1137/070686408. |
[3] |
L. C. Evans and M. Gariepy, "Measure Theory and Fine Properties of Functions," CRC Press, Boca Raton, FL, 1992. |
[4] |
B. Gebauer and O. Scherzer, Impedance-acoustic tomography, SIAM J. Appl. Math., 69 (2008), 565-576.
doi: 10.1137/080715123. |
[5] |
D. Gilbarg and N. S. Trudinger, "Elliptic Partial Differential Equations of Second Order," Reprint of the 1998 edition, Springer-Verlag, Berlin, 2001. |
[6] |
E. Giusti, "Minimal Surfaces and Functions of Bounded Variation," Monographs in Mathematics 80, Birkhäuser Verlag, Basel, 1984. |
[7] |
M. L. Joy, A. Nachman, K. F. Hasanov, R. S. Yoon and A. W. Ma, A new approach to current density impedance imaging (CDII), Proceedings ISMRM, #2356 (Kyoto, Japan), 2004. |
[8] |
S. Kim, O. Kwon, J. K. Seo and J. R. Yoon, On a nonlinear partial differential equation arising in magnetic resonance electrical impedance tomography, SIAM J. Math. Anal., 34 (2002), 511-526.
doi: 10.1137/S0036141001391354. |
[9] |
O. Kwon, J. Y. Lee and and J. R. Yoon, Equipotential line method for magnetic resonance electrical impedance tomography, Inverse Problems, 18 (2002), 1089-1100.
doi: 10.1088/0266-5611/18/4/310. |
[10] |
O. Kwon, E. J. Woo, J. R. Yoon and J. K. Seo, Magnetic resonance electric impedance tomography (MREIT): Simulation study of J-substitution algorithm, IEEE Trans. Biomed. Eng., 49 (2002), 160-167.
doi: 10.1109/10.979355. |
[11] |
J. Y. Lee, A reconstruction formula and uniqueness of conductivity in MREIT using two internal current distributions, Inverse Problems, 20 (2004), 847-858.
doi: 10.1088/0266-5611/20/3/012. |
[12] |
X. Li, Y. Xu and B. He, Imaging electrical impedance from acoustic measurements by means of magnetoacoustic tomography with magnetic Induction (MAT-MI), IEEE Transactions on Biomedical Engineering, 54 (2007), 323-330.
doi: 10.1109/TBME.2006.883827. |
[13] |
A. Nachman, A. Tamasan and A. Timonov, Conductivity imaging with a single measurement of boundary and interior data, Inverse Problems, 23 (2007), 2551-2563.
doi: 10.1088/0266-5611/23/6/017. |
[14] |
A. Nachman, A. Tamasan and A. Timonov, Recovering the conductivity from a single measurement of interior data, Inverse Problems, 25 (2009), 035014, 16pp. |
[15] |
A. Nachman, A. Tamasan and A. Timonov, Reconstruction of planar conductivities in subdomains from incomplete data, SIAM J. Appl. Math., 70 (2010), 3342-3362.
doi: 10.1137/10079241X. |
[16] |
M. Z. Nashed and O. Scherzer, Stable approximation of nondifferentiable optimization problems with variational inequalities, Contemp. Math., 204 (1997), 155-170. |
[17] |
M. Z. Nashed and O. Scherzer, Stable approximation of a minimal surface problem with variational inequalitites, Abstr. and Appl. Anal., 2 (1997), 137-161.
doi: 10.1155/S1085337597000316. |
[18] |
G. C. Scott, M. L. Joy, R. L. Armstrong and R. M. Henkelman, Measurement of nonuniform current density by magnetic resonance, IEEE Trans. Med. Imag., 10 (1991), 362-374.
doi: 10.1109/42.97586. |
[19] |
N. Zhang, "Electrical Impedance Tomography Based on Current Density Imaging," M. Sc. Thesis, University of Toronto, Canada, 1992. |
[20] |
E. Zeidler, "Nonlinear Functional Analysis and its Applications. III. Variational Methods and Optimization," Springer-Verlag, New York, 1985. |
[21] |
W. P. Ziemer, "Weakly Differentiable Functions. Sobolev Spaces and Functions of Bounded Variation," Springer-Verlag, New York, 1989. |
[1] |
Nurullah Yilmaz, Ahmet Sahiner. On a new smoothing technique for non-smooth, non-convex optimization. Numerical Algebra, Control and Optimization, 2020, 10 (3) : 317-330. doi: 10.3934/naco.2020004 |
[2] |
Constantin Christof, Christian Meyer, Stephan Walther, Christian Clason. Optimal control of a non-smooth semilinear elliptic equation. Mathematical Control and Related Fields, 2018, 8 (1) : 247-276. doi: 10.3934/mcrf.2018011 |
[3] |
Christian Clason, Vu Huu Nhu, Arnd Rösch. Optimal control of a non-smooth quasilinear elliptic equation. Mathematical Control and Related Fields, 2021, 11 (3) : 521-554. doi: 10.3934/mcrf.2020052 |
[4] |
Jianhua Huang, Wenxian Shen. Pullback attractors for nonautonomous and random parabolic equations on non-smooth domains. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 855-882. doi: 10.3934/dcds.2009.24.855 |
[5] |
Paul Glendinning. Non-smooth pitchfork bifurcations. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 457-464. doi: 10.3934/dcdsb.2004.4.457 |
[6] |
Zhiwei Tian, Yanyan Shi, Meng Wang, Xiaolong Kong, Lei Li, Feng Fu. A wavelet frame constrained total generalized variation model for imaging conductivity distribution. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2021074 |
[7] |
Luis Bayón, Jose Maria Grau, Maria del Mar Ruiz, Pedro Maria Suárez. A hydrothermal problem with non-smooth Lagrangian. Journal of Industrial and Management Optimization, 2014, 10 (3) : 761-776. doi: 10.3934/jimo.2014.10.761 |
[8] |
Roberto Triggiani. Sharp regularity theory of second order hyperbolic equations with Neumann boundary control non-smooth in space. Evolution Equations and Control Theory, 2016, 5 (4) : 489-514. doi: 10.3934/eect.2016016 |
[9] |
Ciprian G. Gal, Mahamadi Warma. Reaction-diffusion equations with fractional diffusion on non-smooth domains with various boundary conditions. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1279-1319. doi: 10.3934/dcds.2016.36.1279 |
[10] |
Yin Yang, Sujuan Kang, Vasiliy I. Vasil'ev. The Jacobi spectral collocation method for fractional integro-differential equations with non-smooth solutions. Electronic Research Archive, 2020, 28 (3) : 1161-1189. doi: 10.3934/era.2020064 |
[11] |
Giuseppe Tomassetti. Smooth and non-smooth regularizations of the nonlinear diffusion equation. Discrete and Continuous Dynamical Systems - S, 2017, 10 (6) : 1519-1537. doi: 10.3934/dcdss.2017078 |
[12] |
Nicola Gigli, Sunra Mosconi. The Abresch-Gromoll inequality in a non-smooth setting. Discrete and Continuous Dynamical Systems, 2014, 34 (4) : 1481-1509. doi: 10.3934/dcds.2014.34.1481 |
[13] |
Hongwei Lou, Junjie Wen, Yashan Xu. Time optimal control problems for some non-smooth systems. Mathematical Control and Related Fields, 2014, 4 (3) : 289-314. doi: 10.3934/mcrf.2014.4.289 |
[14] |
Yanni Xiao, Tingting Zhao, Sanyi Tang. Dynamics of an infectious diseases with media/psychology induced non-smooth incidence. Mathematical Biosciences & Engineering, 2013, 10 (2) : 445-461. doi: 10.3934/mbe.2013.10.445 |
[15] |
Deepak Singh, Bilal Ahmad Dar, Do Sang Kim. Sufficiency and duality in non-smooth interval valued programming problems. Journal of Industrial and Management Optimization, 2019, 15 (2) : 647-665. doi: 10.3934/jimo.2018063 |
[16] |
Salvatore A. Marano, Sunra Mosconi. Non-smooth critical point theory on closed convex sets. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1187-1202. doi: 10.3934/cpaa.2014.13.1187 |
[17] |
Michael Goldberg. Strichartz estimates for Schrödinger operators with a non-smooth magnetic potential. Discrete and Continuous Dynamical Systems, 2011, 31 (1) : 109-118. doi: 10.3934/dcds.2011.31.109 |
[18] |
R.M. Brown, L.D. Gauthier. Inverse boundary value problems for polyharmonic operators with non-smooth coefficients. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022006 |
[19] |
Martino Bardi, Paola Mannucci. On the Dirichlet problem for non-totally degenerate fully nonlinear elliptic equations. Communications on Pure and Applied Analysis, 2006, 5 (4) : 709-731. doi: 10.3934/cpaa.2006.5.709 |
[20] |
Nurullah Yilmaz, Ahmet Sahiner. Generalization of hyperbolic smoothing approach for non-smooth and non-Lipschitz functions. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021170 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]