February  2011, 5(1): 237-261. doi: 10.3934/ipi.2011.5.237

Augmented Lagrangian method for total variation restoration with non-quadratic fidelity

1. 

Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang Technological University, Singapore

2. 

Division of Computer Communications, School of Computer Engineering, Nanyang Technological University, Singapore

3. 

University of Bergen, University of Bergen Bergen, Norway

Received  December 2009 Revised  September 2010 Published  February 2011

Recently augmented Lagrangian method has been successfully applied to image restoration. We extend the method to total variation (TV) restoration models with non-quadratic fidelities. We will first introduce the method and present an iterative algorithm for TV restoration with a quite general fidelity. In each iteration, three sub-problems need to be solved, two of which can be very efficiently solved via Fast Fourier Transform (FFT) implementation or closed form solution. In general the third sub-problem need iterative solvers. We then apply our method to TV restoration with $L^1$ and Kullback-Leibler (KL) fidelities, two common and important data terms for deblurring images corrupted by impulsive noise and Poisson noise, respectively. For these typical fidelities, we show that the third sub-problem also has closed form solution and thus can be efficiently solved. In addition, convergence analysis of these algorithms are given. Numerical experiments demonstrate the efficiency of our method.
Citation: Chunlin Wu, Juyong Zhang, Xue-Cheng Tai. Augmented Lagrangian method for total variation restoration with non-quadratic fidelity. Inverse Problems & Imaging, 2011, 5 (1) : 237-261. doi: 10.3934/ipi.2011.5.237
References:
[1]

S. Alliney, Digital filters as absolute norm regularizers,, IEEE Trans. Signal Process., 40 (1992), 1548.  doi: 10.1109/78.139258.  Google Scholar

[2]

P. Besbeas, I. D. Fies and T. Sapatinas, A comparative simulation study of wavelet shrinkage estimators for Poisson counts,, International Statistical Review, 72 (2004), 209.  doi: 10.1111/j.1751-5823.2004.tb00234.x.  Google Scholar

[3]

P. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images,, IEEE Trans. Image Process., 7 (1998), 304.  doi: 10.1109/83.661180.  Google Scholar

[4]

A. Bovik, "Handbook of Image and Video Processing,", Academic Press, (2000).   Google Scholar

[5]

X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing,, Inverse Problems and Imaging, 2 (2008), 455.  doi: 10.3934/ipi.2008.2.455.  Google Scholar

[6]

C. Brune, A. Sawatzky and M. Burger, Bregman-EM-TV methods with application to optical nanoscopy,, LNCS, 5567 (2009), 235.   Google Scholar

[7]

A. Caboussat, R. Glowinski and V. Pons, An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem,, J. Numer. Math., 17 (2009), 3.  doi: 10.1515/JNUM.2009.002.  Google Scholar

[8]

E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,, IEEE Trans. Inform. Theory, 52 (2006), 489.  doi: 10.1109/TIT.2005.862083.  Google Scholar

[9]

J. L. Carter, "Dual Methods for Total Variation - Based Image Restoration,", Ph.D thesis, (2001).   Google Scholar

[10]

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems,, Numer. Math., 76 (1997), 167.  doi: 10.1007/s002110050258.  Google Scholar

[11]

A. Chambolle, An algorithm for total variation minimization and applications,, J. Math. Imaging Vision, 20 (2004), 89.  doi: 10.1023/B:JMIV.0000011321.19549.88.  Google Scholar

[12]

R. Chan, C. W. Ho and M. Nikolova, Salt-and-pepper noise removal by median-type noise detector and detail-preserving regularization,, IEEE Trans. Image Process., 14 (2005), 1479.  doi: 10.1109/TIP.2005.852196.  Google Scholar

[13]

R. H. Chan and K. Chen, Multilevel algorithms for a Poisson noise removal model with total variation regularization,, Int. J. Comput. Math., 84 (2007), 1183.  doi: 10.1080/00207160701450390.  Google Scholar

[14]

T. F. Chan, G. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration,, SIAM J. Sci. Comput., 20 (1999), 1964.  doi: 10.1137/S1064827596299767.  Google Scholar

[15]

T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration,, SIAM J. Sci. Comput., 22 (2000), 503.  doi: 10.1137/S1064827598344169.  Google Scholar

[16]

T. F. Chan, S. H. Kang and J. H. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models,, J. Visual Commun. Image Repres., 12 (2001), 422.  doi: 10.1006/jvci.2001.0491.  Google Scholar

[17]

T. F. Chan and S. Esedoglu, Aspects of total variation regularized $L^1$ function approximation,, SIAM J. Appl. Math., 65 (2005), 1817.  doi: 10.1137/040604297.  Google Scholar

[18]

S. Chen, D. Donoho and M. A. Saunders, Atomic decomposition by basis pursuit,, SIAM J. Sci. Comput., 20 (1998), 33.  doi: 10.1137/S1064827596304010.  Google Scholar

[19]

T. Chen and H. R. Wu, Space variant median filters for the restoration of impulse noise corrupted images,, IEEE Trans. Circuits Syst. II, 48 (2001), 784.   Google Scholar

[20]

Y. Dong, M. Hintermüller and M. Neri, An efficient primal-dual method for $L^1$TV image restoration,, SIAM J. Imaging Sciences, 2 (2009), 1168.  doi: 10.1137/090758490.  Google Scholar

[21]

D. L. Donoho, Compressed sensing,, IEEE Trans. Inform. Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[22]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", SIAM, (1999).   Google Scholar

[23]

H. L. Eng and K. K. Ma, Noise adaptive soft-switching median filter,, IEEE Trans. Image Process., 10 (2001), 242.  doi: 10.1109/83.902289.  Google Scholar

[24]

E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split Bregman,, UCLA CAM Report, (): 09.   Google Scholar

[25]

M. A. T. Figueiredo and J. M. Bioucas-Dias, Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization,, in, (2009), 733.  doi: 10.1109/SSP.2009.5278459.  Google Scholar

[26]

H. Y. Fu, M. K. Ng, M. Nikolova and J. L. Barlow, Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration,, SIAM J. Sci. Comput., 27 (2006), 1881.  doi: 10.1137/040615079.  Google Scholar

[27]

R. Glowinski and P. Le Tallec, "Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics,", SIAM, (1989).   Google Scholar

[28]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,, SIAM J. Imaging Sciences, 2 (2009), 323.  doi: 10.1137/080725891.  Google Scholar

[29]

M. R. Hestenes, Multiplier and gradient methods,, J. Optim. Theory and Appl., 4 (1969), 303.  doi: 10.1007/BF00927673.  Google Scholar

[30]

W. Hinterberger and O. Scherzer, Variational methods on the space of functions of bounded Hessian for convexification and denoising,, Computing, 76 (2006), 109.  doi: 10.1007/s00607-005-0119-1.  Google Scholar

[31]

M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method,, SIAM J. Optim., 13 (2002), 865.  doi: 10.1137/S1052623401383558.  Google Scholar

[32]

Y. Huang, M. Ng and Y. Wen, A fast total variation minimization method for image restoration,, SIAM Multi. Model. Simul., 7 (2008), 774.  doi: 10.1137/070703533.  Google Scholar

[33]

H. Hwang and R. A. Haddad, Adaptive median filters: New algorithms and results,, IEEE Trans. Image Process., 4 (1995), 499.  doi: 10.1109/83.370679.  Google Scholar

[34]

C. Kervrann and A. Trubuil, An adaptive window approach for poisson noise reduction and structure preserving in confocal microscopy,, in, (2004), 788.   Google Scholar

[35]

E. Kolaczyk, Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds,, Statist. Sinica, 9 (1999), 119.   Google Scholar

[36]

T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise,, J. Math. Imaging Vision, 27 (2007), 257.  doi: 10.1007/s10851-007-0652-y.  Google Scholar

[37]

Y. Li and S. Osher, A new median formula with applications to PDE based denoising,, Commun. Math. Sci., 7 (2009), 741.   Google Scholar

[38]

M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time,, IEEE Trans. Image Process., 12 (2003), 1579.  doi: 10.1109/TIP.2003.819229.  Google Scholar

[39]

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second order functional,, Int'l J. Computer Vision, (2005).   Google Scholar

[40]

P. Mrazek, J. Weickert and A. Bruhn, On robust estimations and smoothing with spatial and tonal kernels,, in, (2006), 335.  doi: 10.1007/1-4020-3858-8_18.  Google Scholar

[41]

P. E. Ng and K. K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images,, IEEE Trans. Image Process., 15 (2006), 1506.  doi: 10.1109/TIP.2005.871129.  Google Scholar

[42]

M. Nikolova, Minimizers of cost-functions involving non-smooth data fidelity terms,, SIAM J. Num. Anal., 40 (2002), 965.  doi: 10.1137/S0036142901389165.  Google Scholar

[43]

M. Nikolova, A variational approach to remove outliers and impulse noise,, J. Math. Imaging Vision, 20 (2004), 99.  doi: 10.1023/B:JMIV.0000011920.58935.9c.  Google Scholar

[44]

V. Y. Panin, G. L. Zeng and G. T. Gullberg, Total variation regulated EM algorithm [SPECT reconstruction],, IEEE Trans. Nucl. Sci., 46 (1999), 2202.  doi: 10.1109/23.819305.  Google Scholar

[45]

G. Pok, J. C. Liu and A. S. Nair, Selective removal of impulse noise based on homogeneity level information,, IEEE Trans. Image Process., 12 (2003), 85.  doi: 10.1109/TIP.2002.804278.  Google Scholar

[46]

M. J. D. Powell, A method for nonlinear constraints in minimization problems,, in, (1972), 283.   Google Scholar

[47]

R. T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization,, Mathematical Programming, 5 (1973), 354.  doi: 10.1007/BF01580138.  Google Scholar

[48]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[49]

G. Sapiro and D. L. Ringach, Anisotropic diffusion of multivalued images with applications to color filtering,, IEEE Trans. Image Process., 5 (1996), 1582.  doi: 10.1109/83.541429.  Google Scholar

[50]

O. Scherer, Denoising with higher order derivatives of bounded variation and an application to parameter estimation,, Computing, 60 (1998), 1.  doi: 10.1007/BF02684327.  Google Scholar

[51]

S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage,, LNCS, 5567 (2009), 464.   Google Scholar

[52]

S. Setzer, G. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques,, J. Visual Commun. Image Repres., (2009).   Google Scholar

[53]

L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography,, IEEE Trans. Medical Imaging, 1 (1982), 113.  doi: 10.1109/TMI.1982.4307558.  Google Scholar

[54]

X. C. Tai and C. L. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model,, LNCS, 5567 (2009), 502.   Google Scholar

[55]

K. Timmermann and R. Novak, Multiscale modeling and estimation of Poisson processes with applications to photon-limited imaging,, IEEE Trans. Inf. Theor., 45 (1999), 846.  doi: 10.1109/18.761328.  Google Scholar

[56]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction,, SIAM J. Imaging Sciences, 1 (2008), 248.  doi: 10.1137/080724265.  Google Scholar

[57]

C. L. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,, SIAM J. Imaging Sciences, 3 (2010), 300.  doi: 10.1137/090767558.  Google Scholar

[58]

J. F. Yang, W. T. Yin, Y. Zhang and Y. L. Wang, A fast algorithm for edge-preserving variational multichannel image restoration,, SIAM J. Imaging Sciences, 2 (2009), 569.  doi: 10.1137/080730421.  Google Scholar

[59]

J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise,, SIAM J. Sci. Comput., 31 (2009), 2842.  doi: 10.1137/080732894.  Google Scholar

[60]

W. Yin, D. Goldfarb and S. Osher, Image cartoon-texture decomposition and feature selection using the total variation regularized $L^1$ functional,, LNCS, 3752 (2005), 73.   Google Scholar

[61]

W. Yin, D. Goldfarb and S. Osher, The total variation regularized $L^1$ model for multiscale decomposition,, Multi. Model. Simul., 6 (2007), 190.  doi: 10.1137/060663027.  Google Scholar

[62]

W. T. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for compressend sensing and related problems,, SIAM J. Imaging Sciences, 1 (2008), 143.  doi: 10.1137/070703983.  Google Scholar

[63]

W. T. Yin, Analysis and generalizations of the linearized Bregman method,, SIAM J. Imaging Sciences, 3 (2010), 856.  doi: 10.1137/090760350.  Google Scholar

[64]

Y.-L. You and M. Kaveh, Fourth-order partial differential equation for noise removal,, IEEE Trans. Image Process., 9 (2000), 1723.  doi: 10.1109/83.869184.  Google Scholar

[65]

R. Zanella, P. Boccacci, L. Zanni and M. Bertero, Efficient gradient projection methods for edge-preserving removal of Poisson noise,, Inverse Problems, 25 (2009).   Google Scholar

[66]

M. Zhu and T. F. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration,, UCLA CAM Report, (): 08.   Google Scholar

[67]

M. Zhu, S. J. Wright and T. F. Chan, Duality-based algorithms for total variation image restoration,, Comput. Optim. Appl., (2008).   Google Scholar

show all references

References:
[1]

S. Alliney, Digital filters as absolute norm regularizers,, IEEE Trans. Signal Process., 40 (1992), 1548.  doi: 10.1109/78.139258.  Google Scholar

[2]

P. Besbeas, I. D. Fies and T. Sapatinas, A comparative simulation study of wavelet shrinkage estimators for Poisson counts,, International Statistical Review, 72 (2004), 209.  doi: 10.1111/j.1751-5823.2004.tb00234.x.  Google Scholar

[3]

P. Blomgren and T. F. Chan, Color TV: Total variation methods for restoration of vector-valued images,, IEEE Trans. Image Process., 7 (1998), 304.  doi: 10.1109/83.661180.  Google Scholar

[4]

A. Bovik, "Handbook of Image and Video Processing,", Academic Press, (2000).   Google Scholar

[5]

X. Bresson and T. F. Chan, Fast dual minimization of the vectorial total variation norm and applications to color image processing,, Inverse Problems and Imaging, 2 (2008), 455.  doi: 10.3934/ipi.2008.2.455.  Google Scholar

[6]

C. Brune, A. Sawatzky and M. Burger, Bregman-EM-TV methods with application to optical nanoscopy,, LNCS, 5567 (2009), 235.   Google Scholar

[7]

A. Caboussat, R. Glowinski and V. Pons, An augmented Lagrangian approach to the numerical solution of a non-smooth eigenvalue problem,, J. Numer. Math., 17 (2009), 3.  doi: 10.1515/JNUM.2009.002.  Google Scholar

[8]

E. Candes, J. Romberg and T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,, IEEE Trans. Inform. Theory, 52 (2006), 489.  doi: 10.1109/TIT.2005.862083.  Google Scholar

[9]

J. L. Carter, "Dual Methods for Total Variation - Based Image Restoration,", Ph.D thesis, (2001).   Google Scholar

[10]

A. Chambolle and P. L. Lions, Image recovery via total variation minimization and related problems,, Numer. Math., 76 (1997), 167.  doi: 10.1007/s002110050258.  Google Scholar

[11]

A. Chambolle, An algorithm for total variation minimization and applications,, J. Math. Imaging Vision, 20 (2004), 89.  doi: 10.1023/B:JMIV.0000011321.19549.88.  Google Scholar

[12]

R. Chan, C. W. Ho and M. Nikolova, Salt-and-pepper noise removal by median-type noise detector and detail-preserving regularization,, IEEE Trans. Image Process., 14 (2005), 1479.  doi: 10.1109/TIP.2005.852196.  Google Scholar

[13]

R. H. Chan and K. Chen, Multilevel algorithms for a Poisson noise removal model with total variation regularization,, Int. J. Comput. Math., 84 (2007), 1183.  doi: 10.1080/00207160701450390.  Google Scholar

[14]

T. F. Chan, G. H. Golub and P. Mulet, A nonlinear primal-dual method for total variation-based image restoration,, SIAM J. Sci. Comput., 20 (1999), 1964.  doi: 10.1137/S1064827596299767.  Google Scholar

[15]

T. Chan, A. Marquina and P. Mulet, High-order total variation-based image restoration,, SIAM J. Sci. Comput., 22 (2000), 503.  doi: 10.1137/S1064827598344169.  Google Scholar

[16]

T. F. Chan, S. H. Kang and J. H. Shen, Total variation denoising and enhancement of color images based on the CB and HSV color models,, J. Visual Commun. Image Repres., 12 (2001), 422.  doi: 10.1006/jvci.2001.0491.  Google Scholar

[17]

T. F. Chan and S. Esedoglu, Aspects of total variation regularized $L^1$ function approximation,, SIAM J. Appl. Math., 65 (2005), 1817.  doi: 10.1137/040604297.  Google Scholar

[18]

S. Chen, D. Donoho and M. A. Saunders, Atomic decomposition by basis pursuit,, SIAM J. Sci. Comput., 20 (1998), 33.  doi: 10.1137/S1064827596304010.  Google Scholar

[19]

T. Chen and H. R. Wu, Space variant median filters for the restoration of impulse noise corrupted images,, IEEE Trans. Circuits Syst. II, 48 (2001), 784.   Google Scholar

[20]

Y. Dong, M. Hintermüller and M. Neri, An efficient primal-dual method for $L^1$TV image restoration,, SIAM J. Imaging Sciences, 2 (2009), 1168.  doi: 10.1137/090758490.  Google Scholar

[21]

D. L. Donoho, Compressed sensing,, IEEE Trans. Inform. Theory, 52 (2006), 1289.  doi: 10.1109/TIT.2006.871582.  Google Scholar

[22]

I. Ekeland and R. Témam, "Convex Analysis and Variational Problems,", SIAM, (1999).   Google Scholar

[23]

H. L. Eng and K. K. Ma, Noise adaptive soft-switching median filter,, IEEE Trans. Image Process., 10 (2001), 242.  doi: 10.1109/83.902289.  Google Scholar

[24]

E. Esser, Applications of Lagrangian-based alternating direction methods and connections to split Bregman,, UCLA CAM Report, (): 09.   Google Scholar

[25]

M. A. T. Figueiredo and J. M. Bioucas-Dias, Deconvolution of Poissonian images using variable splitting and augmented Lagrangian optimization,, in, (2009), 733.  doi: 10.1109/SSP.2009.5278459.  Google Scholar

[26]

H. Y. Fu, M. K. Ng, M. Nikolova and J. L. Barlow, Efficient minimization methods of mixed l2-l1 and l1-l1 norms for image restoration,, SIAM J. Sci. Comput., 27 (2006), 1881.  doi: 10.1137/040615079.  Google Scholar

[27]

R. Glowinski and P. Le Tallec, "Augmented Lagrangians and Operator-Splitting Methods in Nonlinear Mechanics,", SIAM, (1989).   Google Scholar

[28]

T. Goldstein and S. Osher, The split Bregman method for L1 regularized problems,, SIAM J. Imaging Sciences, 2 (2009), 323.  doi: 10.1137/080725891.  Google Scholar

[29]

M. R. Hestenes, Multiplier and gradient methods,, J. Optim. Theory and Appl., 4 (1969), 303.  doi: 10.1007/BF00927673.  Google Scholar

[30]

W. Hinterberger and O. Scherzer, Variational methods on the space of functions of bounded Hessian for convexification and denoising,, Computing, 76 (2006), 109.  doi: 10.1007/s00607-005-0119-1.  Google Scholar

[31]

M. Hintermüller, K. Ito and K. Kunisch, The primal-dual active set strategy as a semismooth Newton method,, SIAM J. Optim., 13 (2002), 865.  doi: 10.1137/S1052623401383558.  Google Scholar

[32]

Y. Huang, M. Ng and Y. Wen, A fast total variation minimization method for image restoration,, SIAM Multi. Model. Simul., 7 (2008), 774.  doi: 10.1137/070703533.  Google Scholar

[33]

H. Hwang and R. A. Haddad, Adaptive median filters: New algorithms and results,, IEEE Trans. Image Process., 4 (1995), 499.  doi: 10.1109/83.370679.  Google Scholar

[34]

C. Kervrann and A. Trubuil, An adaptive window approach for poisson noise reduction and structure preserving in confocal microscopy,, in, (2004), 788.   Google Scholar

[35]

E. Kolaczyk, Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds,, Statist. Sinica, 9 (1999), 119.   Google Scholar

[36]

T. Le, R. Chartrand and T. J. Asaki, A variational approach to reconstructing images corrupted by Poisson noise,, J. Math. Imaging Vision, 27 (2007), 257.  doi: 10.1007/s10851-007-0652-y.  Google Scholar

[37]

Y. Li and S. Osher, A new median formula with applications to PDE based denoising,, Commun. Math. Sci., 7 (2009), 741.   Google Scholar

[38]

M. Lysaker, A. Lundervold and X.-C. Tai, Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time,, IEEE Trans. Image Process., 12 (2003), 1579.  doi: 10.1109/TIP.2003.819229.  Google Scholar

[39]

M. Lysaker and X.-C. Tai, Iterative image restoration combining total variation minimization and a second order functional,, Int'l J. Computer Vision, (2005).   Google Scholar

[40]

P. Mrazek, J. Weickert and A. Bruhn, On robust estimations and smoothing with spatial and tonal kernels,, in, (2006), 335.  doi: 10.1007/1-4020-3858-8_18.  Google Scholar

[41]

P. E. Ng and K. K. Ma, A switching median filter with boundary discriminative noise detection for extremely corrupted images,, IEEE Trans. Image Process., 15 (2006), 1506.  doi: 10.1109/TIP.2005.871129.  Google Scholar

[42]

M. Nikolova, Minimizers of cost-functions involving non-smooth data fidelity terms,, SIAM J. Num. Anal., 40 (2002), 965.  doi: 10.1137/S0036142901389165.  Google Scholar

[43]

M. Nikolova, A variational approach to remove outliers and impulse noise,, J. Math. Imaging Vision, 20 (2004), 99.  doi: 10.1023/B:JMIV.0000011920.58935.9c.  Google Scholar

[44]

V. Y. Panin, G. L. Zeng and G. T. Gullberg, Total variation regulated EM algorithm [SPECT reconstruction],, IEEE Trans. Nucl. Sci., 46 (1999), 2202.  doi: 10.1109/23.819305.  Google Scholar

[45]

G. Pok, J. C. Liu and A. S. Nair, Selective removal of impulse noise based on homogeneity level information,, IEEE Trans. Image Process., 12 (2003), 85.  doi: 10.1109/TIP.2002.804278.  Google Scholar

[46]

M. J. D. Powell, A method for nonlinear constraints in minimization problems,, in, (1972), 283.   Google Scholar

[47]

R. T. Rockafellar, A dual approach to solving nonlinear programming problems by unconstrained optimization,, Mathematical Programming, 5 (1973), 354.  doi: 10.1007/BF01580138.  Google Scholar

[48]

L. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal algorithms,, Physica D, 60 (1992), 259.  doi: 10.1016/0167-2789(92)90242-F.  Google Scholar

[49]

G. Sapiro and D. L. Ringach, Anisotropic diffusion of multivalued images with applications to color filtering,, IEEE Trans. Image Process., 5 (1996), 1582.  doi: 10.1109/83.541429.  Google Scholar

[50]

O. Scherer, Denoising with higher order derivatives of bounded variation and an application to parameter estimation,, Computing, 60 (1998), 1.  doi: 10.1007/BF02684327.  Google Scholar

[51]

S. Setzer, Split Bregman algorithm, Douglas-Rachford splitting and frame shrinkage,, LNCS, 5567 (2009), 464.   Google Scholar

[52]

S. Setzer, G. Steidl and T. Teuber, Deblurring Poissonian images by split Bregman techniques,, J. Visual Commun. Image Repres., (2009).   Google Scholar

[53]

L. A. Shepp and Y. Vardi, Maximum likelihood reconstruction for emission tomography,, IEEE Trans. Medical Imaging, 1 (1982), 113.  doi: 10.1109/TMI.1982.4307558.  Google Scholar

[54]

X. C. Tai and C. L. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model,, LNCS, 5567 (2009), 502.   Google Scholar

[55]

K. Timmermann and R. Novak, Multiscale modeling and estimation of Poisson processes with applications to photon-limited imaging,, IEEE Trans. Inf. Theor., 45 (1999), 846.  doi: 10.1109/18.761328.  Google Scholar

[56]

Y. Wang, J. Yang, W. Yin and Y. Zhang, A new alternating minimization algorithm for total variation image reconstruction,, SIAM J. Imaging Sciences, 1 (2008), 248.  doi: 10.1137/080724265.  Google Scholar

[57]

C. L. Wu and X. C. Tai, Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models,, SIAM J. Imaging Sciences, 3 (2010), 300.  doi: 10.1137/090767558.  Google Scholar

[58]

J. F. Yang, W. T. Yin, Y. Zhang and Y. L. Wang, A fast algorithm for edge-preserving variational multichannel image restoration,, SIAM J. Imaging Sciences, 2 (2009), 569.  doi: 10.1137/080730421.  Google Scholar

[59]

J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise,, SIAM J. Sci. Comput., 31 (2009), 2842.  doi: 10.1137/080732894.  Google Scholar

[60]

W. Yin, D. Goldfarb and S. Osher, Image cartoon-texture decomposition and feature selection using the total variation regularized $L^1$ functional,, LNCS, 3752 (2005), 73.   Google Scholar

[61]

W. Yin, D. Goldfarb and S. Osher, The total variation regularized $L^1$ model for multiscale decomposition,, Multi. Model. Simul., 6 (2007), 190.  doi: 10.1137/060663027.  Google Scholar

[62]

W. T. Yin, S. Osher, D. Goldfarb and J. Darbon, Bregman iterative algorithms for compressend sensing and related problems,, SIAM J. Imaging Sciences, 1 (2008), 143.  doi: 10.1137/070703983.  Google Scholar

[63]

W. T. Yin, Analysis and generalizations of the linearized Bregman method,, SIAM J. Imaging Sciences, 3 (2010), 856.  doi: 10.1137/090760350.  Google Scholar

[64]

Y.-L. You and M. Kaveh, Fourth-order partial differential equation for noise removal,, IEEE Trans. Image Process., 9 (2000), 1723.  doi: 10.1109/83.869184.  Google Scholar

[65]

R. Zanella, P. Boccacci, L. Zanni and M. Bertero, Efficient gradient projection methods for edge-preserving removal of Poisson noise,, Inverse Problems, 25 (2009).   Google Scholar

[66]

M. Zhu and T. F. Chan, An efficient primal-dual hybrid gradient algorithm for total variation image restoration,, UCLA CAM Report, (): 08.   Google Scholar

[67]

M. Zhu, S. J. Wright and T. F. Chan, Duality-based algorithms for total variation image restoration,, Comput. Optim. Appl., (2008).   Google Scholar

[1]

Mingchao Zhao, You-Wei Wen, Michael Ng, Hongwei Li. A nonlocal low rank model for poisson noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021003

[2]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[3]

Jérôme Lohéac, Chaouki N. E. Boultifat, Philippe Chevrel, Mohamed Yagoubi. Exact noise cancellation for 1d-acoustic propagation systems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020055

[4]

Leanne Dong. Random attractors for stochastic Navier-Stokes equation on a 2D rotating sphere with stable Lévy noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020352

[5]

Chaman Kumar. On Milstein-type scheme for SDE driven by Lévy noise with super-linear coefficients. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1405-1446. doi: 10.3934/dcdsb.2020167

[6]

Bao Wang, Alex Lin, Penghang Yin, Wei Zhu, Andrea L. Bertozzi, Stanley J. Osher. Adversarial defense via the data-dependent activation, total variation minimization, and adversarial training. Inverse Problems & Imaging, 2021, 15 (1) : 129-145. doi: 10.3934/ipi.2020046

[7]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[8]

Yu Zhou, Xinfeng Dong, Yongzhuang Wei, Fengrong Zhang. A note on the Signal-to-noise ratio of $ (n, m) $-functions. Advances in Mathematics of Communications, 2020  doi: 10.3934/amc.2020117

[9]

Shang Wu, Pengfei Xu, Jianhua Huang, Wei Yan. Ergodicity of stochastic damped Ostrovsky equation driven by white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1615-1626. doi: 10.3934/dcdsb.2020175

[10]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[11]

Waixiang Cao, Lueling Jia, Zhimin Zhang. A $ C^1 $ Petrov-Galerkin method and Gauss collocation method for 1D general elliptic problems and superconvergence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 81-105. doi: 10.3934/dcdsb.2020327

[12]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[13]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[14]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[15]

Alain Bensoussan, Xinwei Feng, Jianhui Huang. Linear-quadratic-Gaussian mean-field-game with partial observation and common noise. Mathematical Control & Related Fields, 2021, 11 (1) : 23-46. doi: 10.3934/mcrf.2020025

[16]

Nicolas Dirr, Hubertus Grillmeier, Günther Grün. On stochastic porous-medium equations with critical-growth conservative multiplicative noise. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020388

[17]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1749-1762. doi: 10.3934/dcdsb.2020318

[18]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[19]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[20]

Knut Hüper, Irina Markina, Fátima Silva Leite. A Lagrangian approach to extremal curves on Stiefel manifolds. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020031

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (244)
  • HTML views (0)
  • Cited by (74)

Other articles
by authors

[Back to Top]