May  2011, 5(2): 285-296. doi: 10.3934/ipi.2011.5.285

Identifying a space dependent coefficient in a reaction-diffusion equation

1. 

Dipartimento di Matematica “G. Castelnuovo”, Università di Roma “La Sapienza”, P.le Aldo Moro 5, 00185 Roma, Italy

2. 

Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, Via Saldini 50, 20133 Milano, Italy

Received  March 2010 Revised  September 2010 Published  May 2011

We consider a reaction-diffusion equation for the front motion $u$ in which the reaction term is given by $c(x)g(u)$. We formulate a suitable inverse problem for the unknowns $u$ and $c$, where $u$ satisfies homogeneous Neumann boundary conditions and the additional condition is of integral type on the time interval $[0,T]$. Uniqueness of the solution is proved in the case of a linear $g$. Assuming $g$ non linear, we show uniqueness for large $T$.
Citation: Elena Beretta, Cecilia Cavaterra. Identifying a space dependent coefficient in a reaction-diffusion equation. Inverse Problems & Imaging, 2011, 5 (2) : 285-296. doi: 10.3934/ipi.2011.5.285
References:
[1]

M. Choulli, An inverse problem for a semilinear parabolic equation,, Inverse Problems, 10 (1994), 1123.  doi: 10.1088/0266-5611/10/5/009.  Google Scholar

[2]

M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition,, Inverse Problems, 13 (1997), 19.  doi: 10.1088/0266-5611/13/1/003.  Google Scholar

[3]

M. Choulli and M. Yamamoto, Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation,, Nonlinear Anal., 69 (2008), 3983.  doi: 10.1016/j.na.2007.10.031.  Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[5]

V. Isakov, Inverse Parabolic Problems with the final overdetermination,, Comm. Pure Appl. Math., 44 (1991), 185.  doi: 10.1002/cpa.3160440203.  Google Scholar

[6]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second Edition, (2006).   Google Scholar

[7]

V. Isakov, Some inverse parabolic problems for the diffusion equation,, Inverse Problems, 15 (1999), 3.  doi: 10.1088/0266-5611/15/1/004.  Google Scholar

[8]

V. L. Kamynin, On the unique solvability of an inverse problem for parabolic equations under a final overdetermination conditions,, Math. Notes, 73 (2003), 202.  doi: 10.1023/A:1022107024916.  Google Scholar

[9]

V. L. Kamynin, On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination conditions,, Math. Notes, 77 (2005), 482.  doi: 10.1007/s11006-005-0047-6.  Google Scholar

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", AMS, (1968).   Google Scholar

[11]

V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media,, Phys. Rev. E (3), 68 (2003).  doi: 10.1103/PhysRevE.68.041105.  Google Scholar

[12]

C. V. Pao, "Nonlinear Parabolic And Elliptic Equations,", Plenum Press, (1992).   Google Scholar

[13]

A. I. Prilepko and V. V. Solov'ev, Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type II,, Diff. Eq., 23 (1987), 1341.   Google Scholar

[14]

A. B. Kostin and A. I. Prilepko, On certain inverse problems for parabolic equations with final and integral observation,, Russian Acad. Sci. Sb. Math., 75 (1993), 473.  doi: 10.1070/SM1993v075n02ABEH003394.  Google Scholar

[15]

H. G. Rotstein, A. M. Zhabotinsky and I. R. Epstein, Dynamics of one- and two-dimensional kinds in bistable reaction-diffusion equations with quasidiscrete sources of reaction,, Chaos, 11 (2001), 833.  doi: 10.1063/1.1418459.  Google Scholar

show all references

References:
[1]

M. Choulli, An inverse problem for a semilinear parabolic equation,, Inverse Problems, 10 (1994), 1123.  doi: 10.1088/0266-5611/10/5/009.  Google Scholar

[2]

M. Choulli and M. Yamamoto, An inverse parabolic problem with non-zero initial condition,, Inverse Problems, 13 (1997), 19.  doi: 10.1088/0266-5611/13/1/003.  Google Scholar

[3]

M. Choulli and M. Yamamoto, Uniqueness and stability in determining the heat radiative coefficient, the initial temperature and a boundary coefficient in a parabolic equation,, Nonlinear Anal., 69 (2008), 3983.  doi: 10.1016/j.na.2007.10.031.  Google Scholar

[4]

A. Friedman, "Partial Differential Equations of Parabolic Type,", Prentice-Hall, (1964).   Google Scholar

[5]

V. Isakov, Inverse Parabolic Problems with the final overdetermination,, Comm. Pure Appl. Math., 44 (1991), 185.  doi: 10.1002/cpa.3160440203.  Google Scholar

[6]

V. Isakov, "Inverse Problems for Partial Differential Equations,", Second Edition, (2006).   Google Scholar

[7]

V. Isakov, Some inverse parabolic problems for the diffusion equation,, Inverse Problems, 15 (1999), 3.  doi: 10.1088/0266-5611/15/1/004.  Google Scholar

[8]

V. L. Kamynin, On the unique solvability of an inverse problem for parabolic equations under a final overdetermination conditions,, Math. Notes, 73 (2003), 202.  doi: 10.1023/A:1022107024916.  Google Scholar

[9]

V. L. Kamynin, On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination conditions,, Math. Notes, 77 (2005), 482.  doi: 10.1007/s11006-005-0047-6.  Google Scholar

[10]

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type,", AMS, (1968).   Google Scholar

[11]

V. Méndez, J. Fort, H. G. Rotstein and S. Fedotov, Speed of reaction-diffusion fronts in spatially heterogeneous media,, Phys. Rev. E (3), 68 (2003).  doi: 10.1103/PhysRevE.68.041105.  Google Scholar

[12]

C. V. Pao, "Nonlinear Parabolic And Elliptic Equations,", Plenum Press, (1992).   Google Scholar

[13]

A. I. Prilepko and V. V. Solov'ev, Solvability theorems and the Rothe method in inverse problems for an equation of parabolic type II,, Diff. Eq., 23 (1987), 1341.   Google Scholar

[14]

A. B. Kostin and A. I. Prilepko, On certain inverse problems for parabolic equations with final and integral observation,, Russian Acad. Sci. Sb. Math., 75 (1993), 473.  doi: 10.1070/SM1993v075n02ABEH003394.  Google Scholar

[15]

H. G. Rotstein, A. M. Zhabotinsky and I. R. Epstein, Dynamics of one- and two-dimensional kinds in bistable reaction-diffusion equations with quasidiscrete sources of reaction,, Chaos, 11 (2001), 833.  doi: 10.1063/1.1418459.  Google Scholar

[1]

Masaharu Taniguchi. Axisymmetric traveling fronts in balanced bistable reaction-diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3981-3995. doi: 10.3934/dcds.2020126

[2]

Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405

[3]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[4]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[5]

Chungang Shi, Wei Wang, Dafeng Chen. Weak time discretization for slow-fast stochastic reaction-diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021019

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[11]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[12]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[13]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[14]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[15]

Guillaume Cantin, M. A. Aziz-Alaoui. Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020283

[16]

Shin-Ichiro Ei, Hiroshi Ishii. The motion of weakly interacting localized patterns for reaction-diffusion systems with nonlocal effect. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 173-190. doi: 10.3934/dcdsb.2020329

[17]

El Haj Laamri, Michel Pierre. Stationary reaction-diffusion systems in $ L^1 $ revisited. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 455-464. doi: 10.3934/dcdss.2020355

[18]

Klemens Fellner, Jeff Morgan, Bao Quoc Tang. Uniform-in-time bounds for quadratic reaction-diffusion systems with mass dissipation in higher dimensions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 635-651. doi: 10.3934/dcdss.2020334

[19]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[20]

Raffaele Folino, Ramón G. Plaza, Marta Strani. Long time dynamics of solutions to $ p $-Laplacian diffusion problems with bistable reaction terms. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020403

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]