• Previous Article
    A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration
  • IPI Home
  • This Issue
  • Next Article
    Identifying a space dependent coefficient in a reaction-diffusion equation
May  2011, 5(2): 297-322. doi: 10.3934/ipi.2011.5.297

On an inverse problem in electromagnetism with local data: stability and uniqueness

1. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received  May 2010 Revised  March 2011 Published  May 2011

In this paper we prove a stable determination of the coefficients of the time-harmonic Maxwell equations from local boundary data. The argument --due to Isakov-- requires some restrictions on the domain.
Citation: Pedro Caro. On an inverse problem in electromagnetism with local data: stability and uniqueness. Inverse Problems & Imaging, 2011, 5 (2) : 297-322. doi: 10.3934/ipi.2011.5.297
References:
[1]

G. Alessandrini, Stable determination of the conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar

[2]

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem,, Adv. Appl. Math., 35 (2005), 207.  doi: 10.1016/j.aam.2004.12.002.  Google Scholar

[3]

K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. PDE, 30 (2005), 207.  doi: 10.1081/PDE-200044485.  Google Scholar

[4]

R. Brown, Global uniqueness in the impedance imaging problem for less regular conductivities,, SIAM J. Math. Anal., 27 (1996), 1049.  doi: 10.1137/S0036141094271132.  Google Scholar

[5]

A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data,, Comm. PDE, 27 (2002), 653.  doi: 10.1081/PDE-120002868.  Google Scholar

[6]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. PDE, 34 (2009), 1425.  doi: 10.1080/03605300903296272.  Google Scholar

[7]

P. Caro, Stable determination of the electromagnetic coefficients by boundary measurements,, Inverse Problems, 26 (2010).   Google Scholar

[8]

D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,, Arch. Rational Mech. Anal., 119 (1992), 59.  doi: 10.1007/BF00376010.  Google Scholar

[9]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787.  doi: 10.1088/0266-5611/22/5/015.  Google Scholar

[10]

H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements,, preprint (2007) \arXiv{0708.3289v1}., (2007).   Google Scholar

[11]

V. Isakov, Carleman estimates and applications to inverse problems,, Milan J. Math., 72 (2004), 249.  doi: 10.1007/s00032-004-0033-6.  Google Scholar

[12]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Probl. Imaging, 1 (2007), 95.   Google Scholar

[13]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Funct. Anal., 130 (1995), 161.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[14]

M. Joshi, S. R. McDowall, Total determination of material parameters from electromagnetic boundary information,, Pacific J. Math., 193 (2000), 107.  doi: 10.2140/pjm.2000.193.107.  Google Scholar

[15]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Math. J., 157 (2011), 369.  doi: 10.1215/00127094-1272903.  Google Scholar

[16]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math., 165 (2007), 567.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[17]

Y. Kurylev, M. Lassas, Matti and E. Somersalo, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems,, J. Math. Pures Appl., 86 (2006), 237.  doi: 10.1016/j.matpur.2006.01.008.  Google Scholar

[18]

R. Leis, "Initial Boundary Value Problems in Mathematical Physics,", Wiley, (1986).   Google Scholar

[19]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357.  doi: 10.1088/0266-5611/23/6/005.  Google Scholar

[20]

S. R. McDowall, An electromagnetic inverse problem in chiral media,, Trans. Amer. Math. Soc., 352 (2000), 2993.  doi: 10.1090/S0002-9947-00-02518-6.  Google Scholar

[21]

M. Mitrea, Sharp Hodge decomposition, Maxwell's equations, and vector Poisson problems on non-smooth, three-dimensional riemannian manifolds,, Duke Math. J., 125 (2004), 467.  doi: 10.1215/S0012-7094-04-12322-1.  Google Scholar

[22]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke Math. J., 70 (1993), 617.  doi: 10.1215/S0012-7094-93-07014-7.  Google Scholar

[23]

P. Ola, L. Päivärinta and E. Somersalo, Inverse problems for time harmonic electrodynamics. Inside out: inverse problems and applications,, 169-191, 47 (2003), 169.   Google Scholar

[24]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials,, SIAM J. Appl. Math., 56 (1996), 1129.  doi: 10.1137/S0036139995283948.  Google Scholar

[25]

M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators,, Math. Ann., 344 (2009), 161.  doi: 10.1007/s00208-008-0301-9.  Google Scholar

[26]

M. Salo and L. Tzou, Inverse problems with partial data for a Dirac system: A Carleman estimate approach,, Adv. Math., 225 (2010), 487.  doi: 10.1016/j.aim.2010.03.003.  Google Scholar

[27]

E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations,, J. Comp. Appl. Math., 42 (1992), 123.  doi: 10.1016/0377-0427(92)90167-V.  Google Scholar

[28]

E. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton University Press, (1970).   Google Scholar

[29]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[30]

H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers,, Rev. Mat. Complut., 15 (2002), 475.   Google Scholar

show all references

References:
[1]

G. Alessandrini, Stable determination of the conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.  doi: 10.1080/00036818808839730.  Google Scholar

[2]

G. Alessandrini and S. Vessella, Lipschitz stability for the inverse conductivity problem,, Adv. Appl. Math., 35 (2005), 207.  doi: 10.1016/j.aam.2004.12.002.  Google Scholar

[3]

K. Astala, L. Päivärinta and M. Lassas, Calderón's inverse problem for anisotropic conductivity in the plane,, Comm. PDE, 30 (2005), 207.  doi: 10.1081/PDE-200044485.  Google Scholar

[4]

R. Brown, Global uniqueness in the impedance imaging problem for less regular conductivities,, SIAM J. Math. Anal., 27 (1996), 1049.  doi: 10.1137/S0036141094271132.  Google Scholar

[5]

A. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data,, Comm. PDE, 27 (2002), 653.  doi: 10.1081/PDE-120002868.  Google Scholar

[6]

P. Caro, P. Ola and M. Salo, Inverse boundary value problem for Maxwell equations with local data,, Comm. PDE, 34 (2009), 1425.  doi: 10.1080/03605300903296272.  Google Scholar

[7]

P. Caro, Stable determination of the electromagnetic coefficients by boundary measurements,, Inverse Problems, 26 (2010).   Google Scholar

[8]

D. Colton and L. Päivärinta, The uniqueness of a solution to an inverse scattering problem for electromagnetic waves,, Arch. Rational Mech. Anal., 119 (1992), 59.  doi: 10.1007/BF00376010.  Google Scholar

[9]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787.  doi: 10.1088/0266-5611/22/5/015.  Google Scholar

[10]

H. Heck and J.-N. Wang, Optimal stability estimate of the inverse boundary value problem by partial measurements,, preprint (2007) \arXiv{0708.3289v1}., (2007).   Google Scholar

[11]

V. Isakov, Carleman estimates and applications to inverse problems,, Milan J. Math., 72 (2004), 249.  doi: 10.1007/s00032-004-0033-6.  Google Scholar

[12]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Probl. Imaging, 1 (2007), 95.   Google Scholar

[13]

D. Jerison and C. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains,, J. Funct. Anal., 130 (1995), 161.  doi: 10.1006/jfan.1995.1067.  Google Scholar

[14]

M. Joshi, S. R. McDowall, Total determination of material parameters from electromagnetic boundary information,, Pacific J. Math., 193 (2000), 107.  doi: 10.2140/pjm.2000.193.107.  Google Scholar

[15]

C. E. Kenig, M. Salo and G. Uhlmann, Inverse problems for the anisotropic Maxwell equations,, Duke Math. J., 157 (2011), 369.  doi: 10.1215/00127094-1272903.  Google Scholar

[16]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math., 165 (2007), 567.  doi: 10.4007/annals.2007.165.567.  Google Scholar

[17]

Y. Kurylev, M. Lassas, Matti and E. Somersalo, Maxwell's equations with a polarization independent wave velocity: Direct and inverse problems,, J. Math. Pures Appl., 86 (2006), 237.  doi: 10.1016/j.matpur.2006.01.008.  Google Scholar

[18]

R. Leis, "Initial Boundary Value Problems in Mathematical Physics,", Wiley, (1986).   Google Scholar

[19]

H. Liu, M. Yamamoto and J. Zou, Reflection principle for the Maxwell equations and its application to inverse electromagnetic scattering,, Inverse Problems, 23 (2007), 2357.  doi: 10.1088/0266-5611/23/6/005.  Google Scholar

[20]

S. R. McDowall, An electromagnetic inverse problem in chiral media,, Trans. Amer. Math. Soc., 352 (2000), 2993.  doi: 10.1090/S0002-9947-00-02518-6.  Google Scholar

[21]

M. Mitrea, Sharp Hodge decomposition, Maxwell's equations, and vector Poisson problems on non-smooth, three-dimensional riemannian manifolds,, Duke Math. J., 125 (2004), 467.  doi: 10.1215/S0012-7094-04-12322-1.  Google Scholar

[22]

P. Ola, L. Päivärinta and E. Somersalo, An inverse boundary value problem in electrodynamics,, Duke Math. J., 70 (1993), 617.  doi: 10.1215/S0012-7094-93-07014-7.  Google Scholar

[23]

P. Ola, L. Päivärinta and E. Somersalo, Inverse problems for time harmonic electrodynamics. Inside out: inverse problems and applications,, 169-191, 47 (2003), 169.   Google Scholar

[24]

P. Ola and E. Somersalo, Electromagnetic inverse problems and generalized Sommerfeld potentials,, SIAM J. Appl. Math., 56 (1996), 1129.  doi: 10.1137/S0036139995283948.  Google Scholar

[25]

M. Salo and L. Tzou, Carleman estimates and inverse problems for Dirac operators,, Math. Ann., 344 (2009), 161.  doi: 10.1007/s00208-008-0301-9.  Google Scholar

[26]

M. Salo and L. Tzou, Inverse problems with partial data for a Dirac system: A Carleman estimate approach,, Adv. Math., 225 (2010), 487.  doi: 10.1016/j.aim.2010.03.003.  Google Scholar

[27]

E. Somersalo, D. Isaacson and M. Cheney, A linearized inverse boundary value problem for Maxwell's equations,, J. Comp. Appl. Math., 42 (1992), 123.  doi: 10.1016/0377-0427(92)90167-V.  Google Scholar

[28]

E. Stein, "Singular Integrals and Differentiability Properties of Functions,", Princeton University Press, (1970).   Google Scholar

[29]

J. Sylvester and G. Uhlmann, A global uniqueness theorem for an inverse boundary value problem,, Ann. of Math., 125 (1987), 153.  doi: 10.2307/1971291.  Google Scholar

[30]

H. Triebel, Function spaces in Lipschitz domains and on Lipschitz manifolds. Characteristic functions as pointwise multipliers,, Rev. Mat. Complut., 15 (2002), 475.   Google Scholar

[1]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[2]

Bastian Gebauer, Nuutti Hyvönen. Factorization method and inclusions of mixed type in an inverse elliptic boundary value problem. Inverse Problems & Imaging, 2008, 2 (3) : 355-372. doi: 10.3934/ipi.2008.2.355

[3]

Eemeli Blåsten, Oleg Yu. Imanuvilov, Masahiro Yamamoto. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials. Inverse Problems & Imaging, 2015, 9 (3) : 709-723. doi: 10.3934/ipi.2015.9.709

[4]

Zhousheng Ruan, Sen Zhang, Sican Xiong. Solving an inverse source problem for a time fractional diffusion equation by a modified quasi-boundary value method. Evolution Equations & Control Theory, 2018, 7 (4) : 669-682. doi: 10.3934/eect.2018032

[5]

Yang Yang, Jian Zhai. Unique determination of a transversely isotropic perturbation in a linearized inverse boundary value problem for elasticity. Inverse Problems & Imaging, 2019, 13 (6) : 1309-1325. doi: 10.3934/ipi.2019057

[6]

Sergei Avdonin, Fritz Gesztesy, Konstantin A. Makarov. Spectral estimation and inverse initial boundary value problems. Inverse Problems & Imaging, 2010, 4 (1) : 1-9. doi: 10.3934/ipi.2010.4.1

[7]

Sunghan Kim, Ki-Ahm Lee, Henrik Shahgholian. Homogenization of the boundary value for the Dirichlet problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (12) : 6843-6864. doi: 10.3934/dcds.2019234

[8]

Frank Jochmann. A singular limit in a nonlinear problem arising in electromagnetism. Communications on Pure & Applied Analysis, 2011, 10 (2) : 541-559. doi: 10.3934/cpaa.2011.10.541

[9]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[10]

Mauro Garavello. Boundary value problem for a phase transition model. Networks & Heterogeneous Media, 2016, 11 (1) : 89-105. doi: 10.3934/nhm.2016.11.89

[11]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[12]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[13]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[14]

Jon Jacobsen, Taylor McAdam. A boundary value problem for integrodifference population models with cyclic kernels. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3191-3207. doi: 10.3934/dcdsb.2014.19.3191

[15]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[16]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[17]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[18]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[19]

Changming Song, Hong Li, Jina Li. Initial boundary value problem for the singularly perturbed Boussinesq-type equation. Conference Publications, 2013, 2013 (special) : 709-717. doi: 10.3934/proc.2013.2013.709

[20]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (11)

Other articles
by authors

[Back to Top]