• Previous Article
    Electrical impedance tomography using a point electrode inverse scheme for complete electrode data
  • IPI Home
  • This Issue
  • Next Article
    A nonlinear multigrid solver with line Gauss-Seidel-semismooth-Newton smoother for the Fenchel pre-dual in total variation based image restoration
May  2011, 5(2): 341-353. doi: 10.3934/ipi.2011.5.341

3D coded aperture imaging, ill-posedness and link with incomplete data radon transform

1. 

Institut de Mathématiques et de Modélisation de Montpellier, CNRS UMR 5149 Place Eugène Bataillon, 34095 Montpellier, France

Received  June 2010 Revised  December 2010 Published  May 2011

Coded Aperture Imaging is a cheap imaging process encountered in many fields of research like optics, medical imaging, astronomy, and that has led to several good results for two dimensional reconstruction methods. However, the three dimensional reconstruction problem remains nowadays severely ill-posed, and has not yet furnished satisfactory outcomes.
    In the present study, we propose an illustration of the poorness of the data in order to operate a good inversion in the 3D case. In the context of a far-field imaging, an inversion formula is derived when the detector screen can be widely translated. This reformulates the 3D inversion problem of coded aperture imaging in terms of classical Radon transform. In the sequel, we examine more accurately this reconstruction formula, and claim that it is equivalent to solve the limited angle Radon transform problem with very restricted data.
    We thus deduce that the performances of any numerical reconstruction will remain shrank, essentially because of the physical nature of the coding process, excepted when a very strong a priori knowledge is given for the 3D source.
Citation: Jean-François Crouzet. 3D coded aperture imaging, ill-posedness and link with incomplete data radon transform. Inverse Problems and Imaging, 2011, 5 (2) : 341-353. doi: 10.3934/ipi.2011.5.341
References:
[1]

D. Barret and al., "Astrophysical Journal Letters," 405, L59, 1993.

[2]

J. Brunol, "Reconstruction d'Images Tomographiques en Médecine Nucléaire," Thèse d'état, University of Paris 11, 1979.

[3]

J. Brunol, N. de Beaucoudrey, J. Fonroget and S. Lowenthal, Imagerie tridimensionnelle en gammagraphie, Optics Communications, 25 (1978), 163-168. doi: 10.1016/0030-4018(78)90297-3.

[4]

J. Brunol and J. Fonroget, Bruit multiplex en gammagraphie par codage, Optics Communications, 22 (1977), 301-306. doi: 10.1016/S0030-4018(97)90015-8.

[5]

N. de Beaucoudrey and L. Garnero, Off-axis multi-slit coding for tomographic X-Ray imaging of microplasma, Optics Communications, 49 (1984), 103-107. doi: 10.1016/0030-4018(84)90371-7.

[6]

N. de Beaucoudrey, L. Garnero and J.-P. Hugonin, Imagerie tomographique par codage et reconstruction, Traitement du signal, 5 (1988), 209-221.

[7]

J. Brunol, R. Sauneuf and J.-P. Gex, Micro coded aperture imaging applied to laser plasma diagnosis, Optics Communications, 31 (1979), 129-134. doi: 10.1016/0030-4018(79)90287-6.

[8]

J-F. Crouzet, "La Gammagraphie par Ouverture de Codage," Ph.D thesis, University of Bordeaux 1, 1996.

[9]

J-F.Crouzet, Radon transform over cones and related deconvolution problems, J. Integral Equations Appl., 13 (2001), 311-337. doi: 10.1216/jiea/1020254808.

[10]

M.-E. Davison, The ill-conditionated nature of the limited angle tomography problem, SIAM Journal of Applied Mathematics, 43 (1983), 428-448. doi: 10.1137/0143028.

[11]

J. Fonroget, Y. Belvaux and S. Lowenthal, Fonction de transfert de modulation d'un système de Gammagraphie holographique, Optics Communications, 15 (1975), 76-79. doi: 10.1016/0030-4018(75)90187-X.

[12]

S. R. Gottesman and E. E. Fenimore, New family of binary arrays for coded aperture imaging, Applied Optics, 28 (1989), 4344-4352. doi: 10.1364/AO.28.004344.

[13]

G.-R. Gindi, R.-G. Paxman and H.-H. Barrett, Reconstruction of an object from its coded image and object constraints, Applied Optics, 23 (1984), 851-856. doi: 10.1364/AO.23.000851.

[14]

B. Honga, Z. Mub and Y. Liu, A new approach of 3D spect reconstruction for near-field coded aperture imaging, Proceedings of SPIE, 6142 (2006).

[15]

J. Illingworth and J. Kittler, A survey of the hough transform, Computer vision, Graphics, and Image Processing, 44 (1988).

[16]

T.-P. Kohman, Coded-aperture $x$- or $\gamma$-ray telescope with least-squares image reconstruction. I. Design considerations, Rev. Sci. Instrum., 60 (1989), 3396-3409. doi: 10.1063/1.1140536.

[17]

T.-P. Kohman, Coded-aperture x-ray or gamma-ray telescope with least-squares image reconstruction. II. Computer simulation, Rev. Sci. Instrum., 60 (1989), 3410-3420. doi: 10.1063/1.1140537.

[18]

T.-P. Kohman, Coded-aperture x-ray or gamma-ray telescope with least-squares image reconstruction. III. Data acquisition and analysis enhancements, Rev. Sci. Instrum., 68 (1997), 2404-2411. doi: 10.1063/1.1148124.

[19]

A.-K. Louis, Incomplete data problems in X-Ray computerized tomography: Singular value decomposition of the limited angle transform, Numerische Mathematik, 48 (1986), 251-262. doi: 10.1007/BF01389474.

[20]

P. Mandrou and al., "Astronomy and Astrophysics," Suppl. 97, 1, 1993.

[21]

R.-S. May, Z. Akcasu and G.-F. Knoll, Gamma-Ray imaging with stochastic apertures, Applied Optics, 13 (1974), 2589-2601. doi: 10.1364/AO.13.002589.

[22]

F. Natterer, "The Mathematics of Computerized Tomography,'' John Wiley & Sons, 1986.

[23]

N. Ohyama, T. Honda and J. Tsujiuchi, Tomogram reconstruction using advanced coded aperture imaging, Optics Communications, 36 (1981), 434-438. doi: 10.1016/0030-4018(81)90184-X.

[24]

R. G. Paxman, W. E. Smith and H. H. Barrett, Two algorithms for use with an orthogonal-view coded-aperture system, J. Nucl. Med., 25 (1984), 700-705.

[25]

C. Zhou and S. K. Nayar, "What are Good Apertures for Defocus Deblurring?," IEEE International Conference on Computational Photography, April 2009. doi: 10.1109/ICCPHOT.2009.5559018.

show all references

References:
[1]

D. Barret and al., "Astrophysical Journal Letters," 405, L59, 1993.

[2]

J. Brunol, "Reconstruction d'Images Tomographiques en Médecine Nucléaire," Thèse d'état, University of Paris 11, 1979.

[3]

J. Brunol, N. de Beaucoudrey, J. Fonroget and S. Lowenthal, Imagerie tridimensionnelle en gammagraphie, Optics Communications, 25 (1978), 163-168. doi: 10.1016/0030-4018(78)90297-3.

[4]

J. Brunol and J. Fonroget, Bruit multiplex en gammagraphie par codage, Optics Communications, 22 (1977), 301-306. doi: 10.1016/S0030-4018(97)90015-8.

[5]

N. de Beaucoudrey and L. Garnero, Off-axis multi-slit coding for tomographic X-Ray imaging of microplasma, Optics Communications, 49 (1984), 103-107. doi: 10.1016/0030-4018(84)90371-7.

[6]

N. de Beaucoudrey, L. Garnero and J.-P. Hugonin, Imagerie tomographique par codage et reconstruction, Traitement du signal, 5 (1988), 209-221.

[7]

J. Brunol, R. Sauneuf and J.-P. Gex, Micro coded aperture imaging applied to laser plasma diagnosis, Optics Communications, 31 (1979), 129-134. doi: 10.1016/0030-4018(79)90287-6.

[8]

J-F. Crouzet, "La Gammagraphie par Ouverture de Codage," Ph.D thesis, University of Bordeaux 1, 1996.

[9]

J-F.Crouzet, Radon transform over cones and related deconvolution problems, J. Integral Equations Appl., 13 (2001), 311-337. doi: 10.1216/jiea/1020254808.

[10]

M.-E. Davison, The ill-conditionated nature of the limited angle tomography problem, SIAM Journal of Applied Mathematics, 43 (1983), 428-448. doi: 10.1137/0143028.

[11]

J. Fonroget, Y. Belvaux and S. Lowenthal, Fonction de transfert de modulation d'un système de Gammagraphie holographique, Optics Communications, 15 (1975), 76-79. doi: 10.1016/0030-4018(75)90187-X.

[12]

S. R. Gottesman and E. E. Fenimore, New family of binary arrays for coded aperture imaging, Applied Optics, 28 (1989), 4344-4352. doi: 10.1364/AO.28.004344.

[13]

G.-R. Gindi, R.-G. Paxman and H.-H. Barrett, Reconstruction of an object from its coded image and object constraints, Applied Optics, 23 (1984), 851-856. doi: 10.1364/AO.23.000851.

[14]

B. Honga, Z. Mub and Y. Liu, A new approach of 3D spect reconstruction for near-field coded aperture imaging, Proceedings of SPIE, 6142 (2006).

[15]

J. Illingworth and J. Kittler, A survey of the hough transform, Computer vision, Graphics, and Image Processing, 44 (1988).

[16]

T.-P. Kohman, Coded-aperture $x$- or $\gamma$-ray telescope with least-squares image reconstruction. I. Design considerations, Rev. Sci. Instrum., 60 (1989), 3396-3409. doi: 10.1063/1.1140536.

[17]

T.-P. Kohman, Coded-aperture x-ray or gamma-ray telescope with least-squares image reconstruction. II. Computer simulation, Rev. Sci. Instrum., 60 (1989), 3410-3420. doi: 10.1063/1.1140537.

[18]

T.-P. Kohman, Coded-aperture x-ray or gamma-ray telescope with least-squares image reconstruction. III. Data acquisition and analysis enhancements, Rev. Sci. Instrum., 68 (1997), 2404-2411. doi: 10.1063/1.1148124.

[19]

A.-K. Louis, Incomplete data problems in X-Ray computerized tomography: Singular value decomposition of the limited angle transform, Numerische Mathematik, 48 (1986), 251-262. doi: 10.1007/BF01389474.

[20]

P. Mandrou and al., "Astronomy and Astrophysics," Suppl. 97, 1, 1993.

[21]

R.-S. May, Z. Akcasu and G.-F. Knoll, Gamma-Ray imaging with stochastic apertures, Applied Optics, 13 (1974), 2589-2601. doi: 10.1364/AO.13.002589.

[22]

F. Natterer, "The Mathematics of Computerized Tomography,'' John Wiley & Sons, 1986.

[23]

N. Ohyama, T. Honda and J. Tsujiuchi, Tomogram reconstruction using advanced coded aperture imaging, Optics Communications, 36 (1981), 434-438. doi: 10.1016/0030-4018(81)90184-X.

[24]

R. G. Paxman, W. E. Smith and H. H. Barrett, Two algorithms for use with an orthogonal-view coded-aperture system, J. Nucl. Med., 25 (1984), 700-705.

[25]

C. Zhou and S. K. Nayar, "What are Good Apertures for Defocus Deblurring?," IEEE International Conference on Computational Photography, April 2009. doi: 10.1109/ICCPHOT.2009.5559018.

[1]

Stefan Kindermann. Convergence of the gradient method for ill-posed problems. Inverse Problems and Imaging, 2017, 11 (4) : 703-720. doi: 10.3934/ipi.2017033

[2]

Matthew A. Fury. Estimates for solutions of nonautonomous semilinear ill-posed problems. Conference Publications, 2015, 2015 (special) : 479-488. doi: 10.3934/proc.2015.0479

[3]

Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An inner-outer regularizing method for ill-posed problems. Inverse Problems and Imaging, 2014, 8 (2) : 409-420. doi: 10.3934/ipi.2014.8.409

[4]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[5]

Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in ill-posed problems - properties and limitations. Inverse Problems and Imaging, 2018, 12 (5) : 1121-1155. doi: 10.3934/ipi.2018047

[6]

Ye Zhang, Bernd Hofmann. Two new non-negativity preserving iterative regularization methods for ill-posed inverse problems. Inverse Problems and Imaging, 2021, 15 (2) : 229-256. doi: 10.3934/ipi.2020062

[7]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[8]

Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for ill-posed non-Linear elliptic Dirichlet boundary value problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1363-1393. doi: 10.3934/dcdsb.2018155

[9]

Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasi-reversibility to solve ill-posed problems for heat and wave equations: The 1D case. Inverse Problems and Imaging, 2015, 9 (4) : 971-1002. doi: 10.3934/ipi.2015.9.971

[10]

Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations II: Applications. Inverse Problems and Imaging, 2007, 1 (3) : 507-523. doi: 10.3934/ipi.2007.1.507

[11]

Misha Perepelitsa. An ill-posed problem for the Navier-Stokes equations for compressible flows. Discrete and Continuous Dynamical Systems, 2010, 26 (2) : 609-623. doi: 10.3934/dcds.2010.26.609

[12]

Zonghao Li, Caibin Zeng. Center manifolds for ill-posed stochastic evolution equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2483-2499. doi: 10.3934/dcdsb.2021142

[13]

Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving ill-posed operator equations with solutions defined on surfaces. Inverse Problems and Imaging, 2017, 11 (2) : 221-246. doi: 10.3934/ipi.2017011

[14]

Lianwang Deng. Local integral manifolds for nonautonomous and ill-posed equations with sectorially dichotomous operator. Communications on Pure and Applied Analysis, 2020, 19 (1) : 145-174. doi: 10.3934/cpaa.2020009

[15]

Youri V. Egorov, Evariste Sanchez-Palencia. Remarks on certain singular perturbations with ill-posed limit in shell theory and elasticity. Discrete and Continuous Dynamical Systems, 2011, 31 (4) : 1293-1305. doi: 10.3934/dcds.2011.31.1293

[16]

Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On Levenberg-Marquardt-Kaczmarz iterative methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2010, 4 (3) : 335-350. doi: 10.3934/ipi.2010.4.335

[17]

Alfredo Lorenzi, Luca Lorenzi. A strongly ill-posed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations and Control Theory, 2014, 3 (3) : 499-524. doi: 10.3934/eect.2014.3.499

[18]

Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163

[19]

Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear ill-posed equations I: convergence analysis. Inverse Problems and Imaging, 2007, 1 (2) : 289-298. doi: 10.3934/ipi.2007.1.289

[20]

Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear ill-posed equations. Inverse Problems and Imaging, 2011, 5 (1) : 1-17. doi: 10.3934/ipi.2011.5.1

2021 Impact Factor: 1.483

Metrics

  • PDF downloads (110)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]