\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

3D coded aperture imaging, ill-posedness and link with incomplete data radon transform

Abstract Related Papers Cited by
  • Coded Aperture Imaging is a cheap imaging process encountered in many fields of research like optics, medical imaging, astronomy, and that has led to several good results for two dimensional reconstruction methods. However, the three dimensional reconstruction problem remains nowadays severely ill-posed, and has not yet furnished satisfactory outcomes.
        In the present study, we propose an illustration of the poorness of the data in order to operate a good inversion in the 3D case. In the context of a far-field imaging, an inversion formula is derived when the detector screen can be widely translated. This reformulates the 3D inversion problem of coded aperture imaging in terms of classical Radon transform. In the sequel, we examine more accurately this reconstruction formula, and claim that it is equivalent to solve the limited angle Radon transform problem with very restricted data.
        We thus deduce that the performances of any numerical reconstruction will remain shrank, essentially because of the physical nature of the coding process, excepted when a very strong a priori knowledge is given for the 3D source.
    Mathematics Subject Classification: Primary: 44A12, 65R10, 65R30; Secondary: 92C55.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. Barret and al., "Astrophysical Journal Letters," 405, L59, 1993.

    [2]

    J. Brunol, "Reconstruction d'Images Tomographiques en Médecine Nucléaire," Thèse d'état, University of Paris 11, 1979.

    [3]

    J. Brunol, N. de Beaucoudrey, J. Fonroget and S. Lowenthal, Imagerie tridimensionnelle en gammagraphie, Optics Communications, 25 (1978), 163-168.doi: 10.1016/0030-4018(78)90297-3.

    [4]

    J. Brunol and J. Fonroget, Bruit multiplex en gammagraphie par codage, Optics Communications, 22 (1977), 301-306.doi: 10.1016/S0030-4018(97)90015-8.

    [5]

    N. de Beaucoudrey and L. Garnero, Off-axis multi-slit coding for tomographic X-Ray imaging of microplasma, Optics Communications, 49 (1984), 103-107.doi: 10.1016/0030-4018(84)90371-7.

    [6]

    N. de Beaucoudrey, L. Garnero and J.-P. Hugonin, Imagerie tomographique par codage et reconstruction, Traitement du signal, 5 (1988), 209-221.

    [7]

    J. Brunol, R. Sauneuf and J.-P. Gex, Micro coded aperture imaging applied to laser plasma diagnosis, Optics Communications, 31 (1979), 129-134.doi: 10.1016/0030-4018(79)90287-6.

    [8]

    J-F. Crouzet, "La Gammagraphie par Ouverture de Codage," Ph.D thesis, University of Bordeaux 1, 1996.

    [9]

    J-F.Crouzet, Radon transform over cones and related deconvolution problems, J. Integral Equations Appl., 13 (2001), 311-337.doi: 10.1216/jiea/1020254808.

    [10]

    M.-E. Davison, The ill-conditionated nature of the limited angle tomography problem, SIAM Journal of Applied Mathematics, 43 (1983), 428-448.doi: 10.1137/0143028.

    [11]

    J. Fonroget, Y. Belvaux and S. Lowenthal, Fonction de transfert de modulation d'un système de Gammagraphie holographique, Optics Communications, 15 (1975), 76-79.doi: 10.1016/0030-4018(75)90187-X.

    [12]

    S. R. Gottesman and E. E. Fenimore, New family of binary arrays for coded aperture imaging, Applied Optics, 28 (1989), 4344-4352.doi: 10.1364/AO.28.004344.

    [13]

    G.-R. Gindi, R.-G. Paxman and H.-H. Barrett, Reconstruction of an object from its coded image and object constraints, Applied Optics, 23 (1984), 851-856.doi: 10.1364/AO.23.000851.

    [14]

    B. Honga, Z. Mub and Y. Liu, A new approach of 3D spect reconstruction for near-field coded aperture imaging, Proceedings of SPIE, 6142 (2006).

    [15]

    J. Illingworth and J. Kittler, A survey of the hough transform, Computer vision, Graphics, and Image Processing, 44 (1988).

    [16]

    T.-P. Kohman, Coded-aperture $x$- or $\gamma$-ray telescope with least-squares image reconstruction. I. Design considerations, Rev. Sci. Instrum., 60 (1989), 3396-3409.doi: 10.1063/1.1140536.

    [17]

    T.-P. Kohman, Coded-aperture x-ray or gamma-ray telescope with least-squares image reconstruction. II. Computer simulation, Rev. Sci. Instrum., 60 (1989), 3410-3420.doi: 10.1063/1.1140537.

    [18]

    T.-P. Kohman, Coded-aperture x-ray or gamma-ray telescope with least-squares image reconstruction. III. Data acquisition and analysis enhancements, Rev. Sci. Instrum., 68 (1997), 2404-2411.doi: 10.1063/1.1148124.

    [19]

    A.-K. Louis, Incomplete data problems in X-Ray computerized tomography: Singular value decomposition of the limited angle transform, Numerische Mathematik, 48 (1986), 251-262.doi: 10.1007/BF01389474.

    [20]

    P. Mandrou and al., "Astronomy and Astrophysics," Suppl. 97, 1, 1993.

    [21]

    R.-S. May, Z. Akcasu and G.-F. Knoll, Gamma-Ray imaging with stochastic apertures, Applied Optics, 13 (1974), 2589-2601.doi: 10.1364/AO.13.002589.

    [22]

    F. Natterer, "The Mathematics of Computerized Tomography,'' John Wiley & Sons, 1986.

    [23]

    N. Ohyama, T. Honda and J. Tsujiuchi, Tomogram reconstruction using advanced coded aperture imaging, Optics Communications, 36 (1981), 434-438.doi: 10.1016/0030-4018(81)90184-X.

    [24]

    R. G. Paxman, W. E. Smith and H. H. Barrett, Two algorithms for use with an orthogonal-view coded-aperture system, J. Nucl. Med., 25 (1984), 700-705.

    [25]

    C. Zhou and S. K. Nayar, "What are Good Apertures for Defocus Deblurring?," IEEE International Conference on Computational Photography, April 2009.doi: 10.1109/ICCPHOT.2009.5559018.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(115) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return