Citation: |
[1] |
A. Baba and M. J. Burke, Measurement of the electrical properties of ungelled ECG electrodes, Int. J. Biol. Biomed. Eng., 2 (2008), 89-97. |
[2] |
D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory," vol. 93 of Applied Mathematical Sciences, Springer-Verlag, Berlin, second ed., 1998. |
[3] |
F. Delbary and R. Kress, Electrical impedance tomography with point electrodes, J. Integral Equations Appl., 22 (2010), 193-216.doi: 10.1216/JIE-2010-22-2-193. |
[4] |
H. Eckel and R. Kress, Nonlinear integral equations for the inverse electrical impedance problem, Inverse Problems, 23 (2007), 475-491.doi: 10.1088/0266-5611/23/2/002. |
[5] |
H. Eckel and R. Kress, Non-linear integral equations for the complete electrode model in inverse impedance tomography, Appl. Anal., 87 (2008), 1267-1288.doi: 10.1080/00036810802032151. |
[6] |
M. Hanke, B. Harrach and N. Hyvönen, Justification of point electrode models in electrical impedance tomography, Math. Models Methods Appl. Sci., accepted. |
[7] |
N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements, Math. Models and Meth. in Appl. Sciences, 19 (2009), 1185-1202.doi: 10.1142/S0218202509003759. |
[8] |
V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary, SIAM J. Appl. Math., 66 (2005), 365-383.doi: 10.1137/040612737. |
[9] |
R. Kress, "Linear Integral Equations," vol. 82 of Applied Mathematical Sciences, Springer-Verlag, New York, second ed., 1999. |
[10] |
R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem, Inverse Problems, 21 (2005), 1207-1223.doi: 10.1088/0266-5611/21/4/002. |
[11] |
E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography, SIAM J. Appl. Math., 52 (1992), 1023-1040.doi: 10.1137/0152060. |
[12] |
O. Steinbach and W. L. Wendland, On C. Neumann's method for second-order elliptic systems in domains with non-smooth boundaries, J. Math. Anal. Appl., 262 (2001), 733-748.doi: 10.1006/jmaa.2001.7615. |