May  2011, 5(2): 355-369. doi: 10.3934/ipi.2011.5.355

Electrical impedance tomography using a point electrode inverse scheme for complete electrode data

1. 

Department of Informatics and Mathematical Modelling, Technical University of Denmark, 2800 Kongens Lyngby, Denmark

2. 

Institut für Numerische und Angewandte Mathematik, Universität Göttingen, 37083 Göttingen

Received  May 2010 Revised  September 2010 Published  May 2011

For the two dimensional inverse electrical impedance problem in the case of piecewise constant conductivities with the currents injected at adjacent point electrodes and the resulting voltages measured between the remaining electrodes, in [3] the authors proposed a nonlinear integral equation approach that extends a method that has been suggested by Kress and Rundell [10] for the case of perfectly conducting inclusions. As the main motivation for using a point electrode method we emphasized on numerical difficulties arising in a corresponding approach by Eckel and Kress [4, 5] for the complete electrode model. Therefore, the purpose of the current paper is to illustrate that the inverse scheme based on point electrodes can be successfully employed when synthetic data from the complete electrode model are used.
Citation: Fabrice Delbary, Rainer Kress. Electrical impedance tomography using a point electrode inverse scheme for complete electrode data. Inverse Problems & Imaging, 2011, 5 (2) : 355-369. doi: 10.3934/ipi.2011.5.355
References:
[1]

A. Baba and M. J. Burke, Measurement of the electrical properties of ungelled ECG electrodes,, Int. J. Biol. Biomed. Eng., 2 (2008), 89.   Google Scholar

[2]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", vol. \textbf{93} of Applied Mathematical Sciences, 93 (1998).   Google Scholar

[3]

F. Delbary and R. Kress, Electrical impedance tomography with point electrodes,, J. Integral Equations Appl., 22 (2010), 193.  doi: 10.1216/JIE-2010-22-2-193.  Google Scholar

[4]

H. Eckel and R. Kress, Nonlinear integral equations for the inverse electrical impedance problem,, Inverse Problems, 23 (2007), 475.  doi: 10.1088/0266-5611/23/2/002.  Google Scholar

[5]

H. Eckel and R. Kress, Non-linear integral equations for the complete electrode model in inverse impedance tomography,, Appl. Anal., 87 (2008), 1267.  doi: 10.1080/00036810802032151.  Google Scholar

[6]

M. Hanke, B. Harrach and N. Hyvönen, Justification of point electrode models in electrical impedance tomography,, Math. Models Methods Appl. Sci., ().   Google Scholar

[7]

N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements,, Math. Models and Meth. in Appl. Sciences, 19 (2009), 1185.  doi: 10.1142/S0218202509003759.  Google Scholar

[8]

V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary,, SIAM J. Appl. Math., 66 (2005), 365.  doi: 10.1137/040612737.  Google Scholar

[9]

R. Kress, "Linear Integral Equations,", vol. 82 of Applied Mathematical Sciences, 82 (1999).   Google Scholar

[10]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem,, Inverse Problems, 21 (2005), 1207.  doi: 10.1088/0266-5611/21/4/002.  Google Scholar

[11]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[12]

O. Steinbach and W. L. Wendland, On C. Neumann's method for second-order elliptic systems in domains with non-smooth boundaries,, J. Math. Anal. Appl., 262 (2001), 733.  doi: 10.1006/jmaa.2001.7615.  Google Scholar

show all references

References:
[1]

A. Baba and M. J. Burke, Measurement of the electrical properties of ungelled ECG electrodes,, Int. J. Biol. Biomed. Eng., 2 (2008), 89.   Google Scholar

[2]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", vol. \textbf{93} of Applied Mathematical Sciences, 93 (1998).   Google Scholar

[3]

F. Delbary and R. Kress, Electrical impedance tomography with point electrodes,, J. Integral Equations Appl., 22 (2010), 193.  doi: 10.1216/JIE-2010-22-2-193.  Google Scholar

[4]

H. Eckel and R. Kress, Nonlinear integral equations for the inverse electrical impedance problem,, Inverse Problems, 23 (2007), 475.  doi: 10.1088/0266-5611/23/2/002.  Google Scholar

[5]

H. Eckel and R. Kress, Non-linear integral equations for the complete electrode model in inverse impedance tomography,, Appl. Anal., 87 (2008), 1267.  doi: 10.1080/00036810802032151.  Google Scholar

[6]

M. Hanke, B. Harrach and N. Hyvönen, Justification of point electrode models in electrical impedance tomography,, Math. Models Methods Appl. Sci., ().   Google Scholar

[7]

N. Hyvönen, Approximating idealized boundary data of electric impedance tomography by electrode measurements,, Math. Models and Meth. in Appl. Sciences, 19 (2009), 1185.  doi: 10.1142/S0218202509003759.  Google Scholar

[8]

V. Kolehmainen, M. Lassas and P. Ola, The inverse conductivity problem with an imperfectly known boundary,, SIAM J. Appl. Math., 66 (2005), 365.  doi: 10.1137/040612737.  Google Scholar

[9]

R. Kress, "Linear Integral Equations,", vol. 82 of Applied Mathematical Sciences, 82 (1999).   Google Scholar

[10]

R. Kress and W. Rundell, Nonlinear integral equations and the iterative solution for an inverse boundary value problem,, Inverse Problems, 21 (2005), 1207.  doi: 10.1088/0266-5611/21/4/002.  Google Scholar

[11]

E. Somersalo, M. Cheney and D. Isaacson, Existence and uniqueness for electrode models for electric current computed tomography,, SIAM J. Appl. Math., 52 (1992), 1023.  doi: 10.1137/0152060.  Google Scholar

[12]

O. Steinbach and W. L. Wendland, On C. Neumann's method for second-order elliptic systems in domains with non-smooth boundaries,, J. Math. Anal. Appl., 262 (2001), 733.  doi: 10.1006/jmaa.2001.7615.  Google Scholar

[1]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[2]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[3]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[6]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[7]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (1) : 301-317. doi: 10.3934/cpaa.2020267

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Yining Cao, Chuck Jia, Roger Temam, Joseph Tribbia. Mathematical analysis of a cloud resolving model including the ice microphysics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 131-167. doi: 10.3934/dcds.2020219

[11]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[12]

Shuang Chen, Jinqiao Duan, Ji Li. Effective reduction of a three-dimensional circadian oscillator model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020349

[13]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[14]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[15]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[16]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[17]

Yuxin Zhang. The spatially heterogeneous diffusive rabies model and its shadow system. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020357

[18]

Yuan Tan, Qingyuan Cao, Lan Li, Tianshi Hu, Min Su. A chance-constrained stochastic model predictive control problem with disturbance feedback. Journal of Industrial & Management Optimization, 2021, 17 (1) : 67-79. doi: 10.3934/jimo.2019099

[19]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[20]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (29)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]