-
Previous Article
Global uniqueness for an inverse problem for the magnetic Schrödinger operator
- IPI Home
- This Issue
-
Next Article
Template matching via $l_1$ minimization and its application to hyperspectral data
Multimodal inverse problems: Maximum compatibility estimate and shape reconstruction
1. | Department of Mathematics, Tampere University of Technology, P.O. Box 553, 33101 Tampere, Finland |
References:
[1] |
A. Zacharopoulos, S. Arridge, O. Dorn, V. Kolehmainen and J. Sikora, Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method, Inverse Problems, 22 (2006), 1509-1532.
doi: 10.1088/0266-5611/22/5/001. |
[2] |
M. Belge, M. Kilmer and E. Miller, Efficient determination of multiple regularization parameters in a generalized L-curve framework, Inverse Problems, 18 (2002), 1161-1183.
doi: 10.1088/0266-5611/18/4/314. |
[3] |
A. Bottino and A. Laurentini, Introducing a new problem: Shape-from-silhouette when the relative positions of the viewpoints are unknown, IEEE Transact. on Pattern Analysis and Machine Intelligence, 25 (2003), 1484-1493
doi: 10.1109/TPAMI.2003.1240121. |
[4] |
B. Carry, C. Dumas, M. Fulchignoni, W. Merline, J. Berthier, D. Hestroffer, T. Fusco and P. Tamblyn, Near-infrared mapping and physical properties of the dwarf-planet Ceres, Astron. Astrophys., 478 (2008), 235-244.
doi: 10.1051/0004-6361:20078166. |
[5] |
B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas, Icarus, 205 (2010), 460-472.
doi: 10.1016/j.icarus.2009.08.007. |
[6] |
B. Carry, A. Conrad, J. Drummond, M. Kaasalainen, W. Merline, J. Berthier and C. Dumas, The resolved asteroid program: Size and shape of (41) Daphne,, Icarus, ().
|
[7] |
K. Cheung, S. Baker and T. Kanade, Shape-From-Silhouette across time part I: Theory and algorithms, Int. J. Comp. Vision, 62 (2005), 221-247.
doi: 10.1007/s11263-005-4881-5. |
[8] |
P. Descamps and 22 colleagues, New insights on the binary asteroid 121 Hermione, Icarus, 203 (2009), 88-101.
doi: 10.1016/j.icarus.2009.04.032. |
[9] |
A. Dobrovolskis, Inertia of any polyhedron, Icarus, 124 (1996), 698-704.
doi: 10.1006/icar.1996.0243. |
[10] |
J. Ďurech and M. Kaasalainen., Photometric signatures of highly nonconvex and binary asteroids, Astron. Astrophys., 404 (2003), 709-714.
doi: 10.1051/0004-6361:20030505. |
[11] |
H. Engl and W. Grever, Using the L-curve for determining optimal regularization parameters, Numer. Math., 69 (1994), 25-31.
doi: 10.1007/s002110050078. |
[12] |
H. Goldstein, "Classical Mechanics" (second edition), Addison-Wesley, Reading, Mass., 1980. |
[13] |
M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT, 36 (1996), 287-301.
doi: 10.1007/BF01731984. |
[14] |
M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes, Astron. Astrophys., 259 (1992), 318-332. |
[15] |
M. Kaasalainen and J. Torppa, Optimization methods for asteroid lightcurve inversion. I. Shape determination, Icarus, 153 (2001), 24-36.
doi: 10.1006/icar.2001.6673. |
[16] |
M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem, Icarus, 153 (2001), 37-51.
doi: 10.1006/icar.2001.6674. |
[17] |
M. Kaasalainen, Interpretation of lightcurves of precessing asteroids, Astron. Astrophys., 376 (2001), 302-309.
doi: 10.1051/0004-6361:20010935. |
[18] |
M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators, Inverse Problems, 22 (2006), 749-769.
doi: 10.1088/0266-5611/22/3/002. |
[19] |
M. Kaasalainen and J. Ďurech, Inverse problems of NEO photometry: Imaging the NEO population, in "Proceedings of IAU: Symposium 236" (Milani, Valsecchi, and Vokrouhlicky, eds.), 2, Cambridge (2007), 151-166. |
[20] |
M. Kaasalainen, J. Ďurech, B. Warner, Y. Krugly and N. Gaftonyuk, Acceleration of the rotation of asteroid 1862 Apollo by radiation torques, Nature, 446 (2007), 420-422.
doi: 10.1038/nature05614. |
[21] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, New York, 2005. |
[22] |
H. U.Keller and 46 colleagues, E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta, Science, 327 (2010), 190-193
doi: 10.1126/science.1179559. |
[23] |
D. Levin, The approximation power of moving least squares, Math. Comp., 67 (1998), 1517-1531.
doi: 10.1090/S0025-5718-98-00974-0. |
[24] |
F. Marchis, M. Kaasalainen, E. Hom, J. Berthier, J. Enriquez, D. Hestroffer, D. Le Mignant and I. de Pater, Shape, size and multiplicity of main-belt asteroids. I. Keck adaptive optics survey, Icarus, 185 (2006), 39-63.
doi: 10.1016/j.icarus.2006.06.001. |
[25] |
P. Pravec, A. Harris and T. Michalowski, Asteroid rotations, in "Asteroids III" (Bottke, Cellino, Paolicchi and Binzel, eds.), U. Arizona Press, Tucson, (2002), 113-122. |
[26] |
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes" (third edition), Cambridge U. Press, New York, 2007. |
[27] |
S. Savarese, M. Andretto, H. Rushmeier, F. Bernardini and P. Perona, 3D reconstruction by shadow carving: Theory and practical evaluation, Int. J. Comp. Vision, 71 (2007), 305-336.
doi: 10.1007/s11263-006-8323-9. |
show all references
References:
[1] |
A. Zacharopoulos, S. Arridge, O. Dorn, V. Kolehmainen and J. Sikora, Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method, Inverse Problems, 22 (2006), 1509-1532.
doi: 10.1088/0266-5611/22/5/001. |
[2] |
M. Belge, M. Kilmer and E. Miller, Efficient determination of multiple regularization parameters in a generalized L-curve framework, Inverse Problems, 18 (2002), 1161-1183.
doi: 10.1088/0266-5611/18/4/314. |
[3] |
A. Bottino and A. Laurentini, Introducing a new problem: Shape-from-silhouette when the relative positions of the viewpoints are unknown, IEEE Transact. on Pattern Analysis and Machine Intelligence, 25 (2003), 1484-1493
doi: 10.1109/TPAMI.2003.1240121. |
[4] |
B. Carry, C. Dumas, M. Fulchignoni, W. Merline, J. Berthier, D. Hestroffer, T. Fusco and P. Tamblyn, Near-infrared mapping and physical properties of the dwarf-planet Ceres, Astron. Astrophys., 478 (2008), 235-244.
doi: 10.1051/0004-6361:20078166. |
[5] |
B. Carry, C. Dumas, M. Kaasalainen and 9 colleagues, Physical properties of 2 Pallas, Icarus, 205 (2010), 460-472.
doi: 10.1016/j.icarus.2009.08.007. |
[6] |
B. Carry, A. Conrad, J. Drummond, M. Kaasalainen, W. Merline, J. Berthier and C. Dumas, The resolved asteroid program: Size and shape of (41) Daphne,, Icarus, ().
|
[7] |
K. Cheung, S. Baker and T. Kanade, Shape-From-Silhouette across time part I: Theory and algorithms, Int. J. Comp. Vision, 62 (2005), 221-247.
doi: 10.1007/s11263-005-4881-5. |
[8] |
P. Descamps and 22 colleagues, New insights on the binary asteroid 121 Hermione, Icarus, 203 (2009), 88-101.
doi: 10.1016/j.icarus.2009.04.032. |
[9] |
A. Dobrovolskis, Inertia of any polyhedron, Icarus, 124 (1996), 698-704.
doi: 10.1006/icar.1996.0243. |
[10] |
J. Ďurech and M. Kaasalainen., Photometric signatures of highly nonconvex and binary asteroids, Astron. Astrophys., 404 (2003), 709-714.
doi: 10.1051/0004-6361:20030505. |
[11] |
H. Engl and W. Grever, Using the L-curve for determining optimal regularization parameters, Numer. Math., 69 (1994), 25-31.
doi: 10.1007/s002110050078. |
[12] |
H. Goldstein, "Classical Mechanics" (second edition), Addison-Wesley, Reading, Mass., 1980. |
[13] |
M. Hanke, Limitations of the L-curve method in ill-posed problems, BIT, 36 (1996), 287-301.
doi: 10.1007/BF01731984. |
[14] |
M. Kaasalainen, L. Lamberg, K. Lumme and E. Bowell, Interpretation of lightcurves of atmosphereless bodies. I. General theory and new inversion schemes, Astron. Astrophys., 259 (1992), 318-332. |
[15] |
M. Kaasalainen and J. Torppa, Optimization methods for asteroid lightcurve inversion. I. Shape determination, Icarus, 153 (2001), 24-36.
doi: 10.1006/icar.2001.6673. |
[16] |
M. Kaasalainen, J. Torppa and K. Muinonen, Optimization methods for asteroid lightcurve inversion. II. The complete inverse problem, Icarus, 153 (2001), 37-51.
doi: 10.1006/icar.2001.6674. |
[17] |
M. Kaasalainen, Interpretation of lightcurves of precessing asteroids, Astron. Astrophys., 376 (2001), 302-309.
doi: 10.1051/0004-6361:20010935. |
[18] |
M. Kaasalainen and L. Lamberg, Inverse problems of generalized projection operators, Inverse Problems, 22 (2006), 749-769.
doi: 10.1088/0266-5611/22/3/002. |
[19] |
M. Kaasalainen and J. Ďurech, Inverse problems of NEO photometry: Imaging the NEO population, in "Proceedings of IAU: Symposium 236" (Milani, Valsecchi, and Vokrouhlicky, eds.), 2, Cambridge (2007), 151-166. |
[20] |
M. Kaasalainen, J. Ďurech, B. Warner, Y. Krugly and N. Gaftonyuk, Acceleration of the rotation of asteroid 1862 Apollo by radiation torques, Nature, 446 (2007), 420-422.
doi: 10.1038/nature05614. |
[21] |
J. Kaipio and E. Somersalo, "Statistical and Computational Inverse Problems," Springer, New York, 2005. |
[22] |
H. U.Keller and 46 colleagues, E-type asteroid (2867) Steins as imaged by OSIRIS on board Rosetta, Science, 327 (2010), 190-193
doi: 10.1126/science.1179559. |
[23] |
D. Levin, The approximation power of moving least squares, Math. Comp., 67 (1998), 1517-1531.
doi: 10.1090/S0025-5718-98-00974-0. |
[24] |
F. Marchis, M. Kaasalainen, E. Hom, J. Berthier, J. Enriquez, D. Hestroffer, D. Le Mignant and I. de Pater, Shape, size and multiplicity of main-belt asteroids. I. Keck adaptive optics survey, Icarus, 185 (2006), 39-63.
doi: 10.1016/j.icarus.2006.06.001. |
[25] |
P. Pravec, A. Harris and T. Michalowski, Asteroid rotations, in "Asteroids III" (Bottke, Cellino, Paolicchi and Binzel, eds.), U. Arizona Press, Tucson, (2002), 113-122. |
[26] |
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, "Numerical Recipes" (third edition), Cambridge U. Press, New York, 2007. |
[27] |
S. Savarese, M. Andretto, H. Rushmeier, F. Bernardini and P. Perona, 3D reconstruction by shadow carving: Theory and practical evaluation, Int. J. Comp. Vision, 71 (2007), 305-336.
doi: 10.1007/s11263-006-8323-9. |
[1] |
Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry II: Numerical methods. Journal of Computational Dynamics, 2021, 8 (3) : 273-307. doi: 10.3934/jcd.2021012 |
[2] |
Peter Giesl, Sigurdur Hafstein. Computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : i-ii. doi: 10.3934/dcdsb.2015.20.8i |
[3] |
Ian H. Dinwoodie. Computational methods for asynchronous basins. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3391-3405. doi: 10.3934/dcdsb.2016103 |
[4] |
Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete and Continuous Dynamical Systems - B, 2015, 20 (8) : 2291-2331. doi: 10.3934/dcdsb.2015.20.2291 |
[5] |
Miguel Ángel Evangelista-Alvarado, José Crispín Ruíz-Pantaleón, Pablo Suárez-Serrato. On computational Poisson geometry I: Symbolic foundations. Journal of Geometric Mechanics, 2021, 13 (4) : 607-628. doi: 10.3934/jgm.2021018 |
[6] |
Victor Isakov, Shingyu Leung, Jianliang Qian. A three-dimensional inverse gravimetry problem for ice with snow caps. Inverse Problems and Imaging, 2013, 7 (2) : 523-544. doi: 10.3934/ipi.2013.7.523 |
[7] |
Mohsen Tadi. A computational method for an inverse problem in a parabolic system. Discrete and Continuous Dynamical Systems - B, 2009, 12 (1) : 205-218. doi: 10.3934/dcdsb.2009.12.205 |
[8] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[9] |
John T. Betts, Stephen L. Campbell, Claire Digirolamo. Initial guess sensitivity in computational optimal control problems. Numerical Algebra, Control and Optimization, 2020, 10 (1) : 39-43. doi: 10.3934/naco.2019031 |
[10] |
Marcin Mazur, Jacek Tabor. Computational hyperbolicity. Discrete and Continuous Dynamical Systems, 2011, 29 (3) : 1175-1189. doi: 10.3934/dcds.2011.29.1175 |
[11] |
Shalela Mohd--Mahali, Song Wang, Xia Lou, Sungging Pintowantoro. Numerical methods for estimating effective diffusion coefficients of three-dimensional drug delivery systems. Numerical Algebra, Control and Optimization, 2012, 2 (2) : 377-393. doi: 10.3934/naco.2012.2.377 |
[12] |
Yang Yu. Introduction: Special issue on computational intelligence methods for big data and information analytics. Big Data & Information Analytics, 2017, 2 (1) : i-ii. doi: 10.3934/bdia.201701i |
[13] |
Masaru Ikehata, Mishio Kawashita. An inverse problem for a three-dimensional heat equation in thermal imaging and the enclosure method. Inverse Problems and Imaging, 2014, 8 (4) : 1073-1116. doi: 10.3934/ipi.2014.8.1073 |
[14] |
Wangtao Lu, Shingyu Leung, Jianliang Qian. An improved fast local level set method for three-dimensional inverse gravimetry. Inverse Problems and Imaging, 2015, 9 (2) : 479-509. doi: 10.3934/ipi.2015.9.479 |
[15] |
Michael Herty, Giuseppe Visconti. Kinetic methods for inverse problems. Kinetic and Related Models, 2019, 12 (5) : 1109-1130. doi: 10.3934/krm.2019042 |
[16] |
Changjun Yu, Lei Yuan, Shuxuan Su. A new gradient computational formula for optimal control problems with time-delay. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021076 |
[17] |
Pardeep Kumar, Manil T. Mohan. Well-posedness of an inverse problem for two- and three-dimensional convective Brinkman-Forchheimer equations with the final overdetermination. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022024 |
[18] |
Mário Bessa, Jorge Rocha. Three-dimensional conservative star flows are Anosov. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 839-846. doi: 10.3934/dcds.2010.26.839 |
[19] |
Bernd Krauskopf, Carlo R. Laing. Novel computational approaches and their applications. Journal of Computational Dynamics, 2020, 7 (2) : i-i. doi: 10.3934/jcd.2020007 |
[20] |
Shu Liao, Jin Wang, Jianjun Paul Tian. A computational study of avian influenza. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1499-1509. doi: 10.3934/dcdss.2011.4.1499 |
2020 Impact Factor: 1.639
Tools
Metrics
Other articles
by authors
[Back to Top]