• Previous Article
    A refinement and coarsening indicator algorithm for finding sparse solutions of inverse problems
  • IPI Home
  • This Issue
  • Next Article
    Electrical impedance tomography using a point electrode inverse scheme for complete electrode data
May  2011, 5(2): 371-390. doi: 10.3934/ipi.2011.5.371

Filtered Kirchhoff migration of cross correlations of ambient noise signals

1. 

Laboratoire de Probabilités et Modèles Aléatoires & Laboratoire Jacques-Louis Lions, Université Paris VII, site Chevaleret, case 7012, 75205 Paris Cedex 13

2. 

Department of Mathematics, University of California at Irvine, Irvine, CA 92697

Received  June 2010 Revised  December 2010 Published  May 2011

In this paper we study passive sensor imaging with ambient noise sources by suitably migrating cross correlations of the recorded signals. We propose and study different imaging functionals. A new functional is introduced that is an inverse Radon transform applied to a special function of the cross correlation matrix. We analyze the properties of the new imaging functional in the high-frequency regime which shows that it produces sharper images than the usual Kirchhoff migration functional. Numerical simulations confirm the theoretical predictions.
Citation: Josselin Garnier, Knut Solna. Filtered Kirchhoff migration of cross correlations of ambient noise signals. Inverse Problems & Imaging, 2011, 5 (2) : 371-390. doi: 10.3934/ipi.2011.5.371
References:
[1]

C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015011.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by the inversion of a causal Radon transform,, J. Math. Phys., 26 (1985), 99.  doi: 10.1063/1.526755.  Google Scholar

[3]

B. L. Biondi, "3D Seismic Imaging," no. 14 in Investigations in Geophysics,, Society of Exploration Geophysics, (2006).   Google Scholar

[4]

N. Bleistein, J. K. Cohen and J. W. Stockwell Jr, "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,", Springer Verlag, (2001).   Google Scholar

[5]

L. Borcea, G. Papanicolaou and C. Tsogka, Interferometric array imaging in clutter,, Inverse Problems, 21 (2005), 1419.  doi: 10.1088/0266-5611/21/4/015.  Google Scholar

[6]

L. Borcea, G. Papanicolaou and C. Tsogka, Coherent interferometric imaging,, Geophysics 71 (2006), 71 (2006).  doi: 10.1190/1.2209541.  Google Scholar

[7]

M. Born and E. Wolf, "Principles of Optics,", Cambridge University Press, (1999).   Google Scholar

[8]

J. F. Claerbout, "Imaging the Earth's Interior,", Blackwell Scientific Publications, (1985).   Google Scholar

[9]

Y. Colin de Verdière, Semiclassical analysis and passive imaging,, Nonlinearity, 22 (2009).  doi: 10.1088/0951-7715/22/6/R01.  Google Scholar

[10]

A. Curtis, P. Gerstoft, H. Sato, R. Snieder and K. Wapenaar, Seismic interferometry - turning noise into signal,, The Leading Edge, 25 (2006), 1082.  doi: 10.1190/1.2349814.  Google Scholar

[11]

M. de Hoop and K. Sølna, Estimating a Green's function from field-field correlations in a random medium,, SIAM J. Appl. Math., 69 (2009), 909.  doi: 10.1137/070701790.  Google Scholar

[12]

J. Garnier, Imaging in randomly layered media by cross-correlating noisy signals,, SIAM Multiscale Model. Simul., 4 (2005), 610.  doi: 10.1137/040613226.  Google Scholar

[13]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium,, SIAM J. Imaging Sciences, 2 (2009), 396.  doi: 10.1137/080723454.  Google Scholar

[14]

O. I. Lobkis and R. L. Weaver, On the emergence of the Green's function in the correlations of a diffuse field,, J. Acoustic. Soc. Am., 110 (2001), 3011.  doi: 10.1121/1.1417528.  Google Scholar

[15]

F. Natterer and F. Wubbeling, "Mathematical Methods in Image Reconstruction,", Society for Industrial and Applied Mathematics, (2001).  doi: 10.1137/1.9780898718324.  Google Scholar

[16]

P. Roux and M. Fink, Green's function estimation using secondary sources in a shallow water environment,, J. Acoust. Soc. Am., 113 (2003), 1406.  doi: 10.1121/1.1542645.  Google Scholar

[17]

K. G. Sabra, P. Gerstoft, P. Roux and W. Kuperman, Surface wave tomography from microseisms in Southern California,, Geophys. Res. Lett., 32 (2005).  doi: 10.1029/2005GL023155.  Google Scholar

[18]

N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise,, Science, 307 (2005), 1615.  doi: 10.1126/science.1108339.  Google Scholar

[19]

L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties,, Geophys. Res. Lett., 111 (2006).   Google Scholar

[20]

K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry,, Geophysics, 71 (2006).  doi: 10.1190/1.2213955.  Google Scholar

[21]

H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps,, Geophysical Journal International, 166 (2006), 732.  doi: 10.1111/j.1365-246X.2006.03028.x.  Google Scholar

show all references

References:
[1]

C. Bardos, J. Garnier and G. Papanicolaou, Identification of Green's functions singularities by cross correlation of noisy signals,, Inverse Problems, 24 (2008).  doi: 10.1088/0266-5611/24/1/015011.  Google Scholar

[2]

G. Beylkin, Imaging of discontinuities in the inverse scattering problem by the inversion of a causal Radon transform,, J. Math. Phys., 26 (1985), 99.  doi: 10.1063/1.526755.  Google Scholar

[3]

B. L. Biondi, "3D Seismic Imaging," no. 14 in Investigations in Geophysics,, Society of Exploration Geophysics, (2006).   Google Scholar

[4]

N. Bleistein, J. K. Cohen and J. W. Stockwell Jr, "Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion,", Springer Verlag, (2001).   Google Scholar

[5]

L. Borcea, G. Papanicolaou and C. Tsogka, Interferometric array imaging in clutter,, Inverse Problems, 21 (2005), 1419.  doi: 10.1088/0266-5611/21/4/015.  Google Scholar

[6]

L. Borcea, G. Papanicolaou and C. Tsogka, Coherent interferometric imaging,, Geophysics 71 (2006), 71 (2006).  doi: 10.1190/1.2209541.  Google Scholar

[7]

M. Born and E. Wolf, "Principles of Optics,", Cambridge University Press, (1999).   Google Scholar

[8]

J. F. Claerbout, "Imaging the Earth's Interior,", Blackwell Scientific Publications, (1985).   Google Scholar

[9]

Y. Colin de Verdière, Semiclassical analysis and passive imaging,, Nonlinearity, 22 (2009).  doi: 10.1088/0951-7715/22/6/R01.  Google Scholar

[10]

A. Curtis, P. Gerstoft, H. Sato, R. Snieder and K. Wapenaar, Seismic interferometry - turning noise into signal,, The Leading Edge, 25 (2006), 1082.  doi: 10.1190/1.2349814.  Google Scholar

[11]

M. de Hoop and K. Sølna, Estimating a Green's function from field-field correlations in a random medium,, SIAM J. Appl. Math., 69 (2009), 909.  doi: 10.1137/070701790.  Google Scholar

[12]

J. Garnier, Imaging in randomly layered media by cross-correlating noisy signals,, SIAM Multiscale Model. Simul., 4 (2005), 610.  doi: 10.1137/040613226.  Google Scholar

[13]

J. Garnier and G. Papanicolaou, Passive sensor imaging using cross correlations of noisy signals in a scattering medium,, SIAM J. Imaging Sciences, 2 (2009), 396.  doi: 10.1137/080723454.  Google Scholar

[14]

O. I. Lobkis and R. L. Weaver, On the emergence of the Green's function in the correlations of a diffuse field,, J. Acoustic. Soc. Am., 110 (2001), 3011.  doi: 10.1121/1.1417528.  Google Scholar

[15]

F. Natterer and F. Wubbeling, "Mathematical Methods in Image Reconstruction,", Society for Industrial and Applied Mathematics, (2001).  doi: 10.1137/1.9780898718324.  Google Scholar

[16]

P. Roux and M. Fink, Green's function estimation using secondary sources in a shallow water environment,, J. Acoust. Soc. Am., 113 (2003), 1406.  doi: 10.1121/1.1542645.  Google Scholar

[17]

K. G. Sabra, P. Gerstoft, P. Roux and W. Kuperman, Surface wave tomography from microseisms in Southern California,, Geophys. Res. Lett., 32 (2005).  doi: 10.1029/2005GL023155.  Google Scholar

[18]

N. M. Shapiro, M. Campillo, L. Stehly and M. H. Ritzwoller, High-resolution surface wave tomography from ambient noise,, Science, 307 (2005), 1615.  doi: 10.1126/science.1108339.  Google Scholar

[19]

L. Stehly, M. Campillo and N. M. Shapiro, A study of the seismic noise from its long-range correlation properties,, Geophys. Res. Lett., 111 (2006).   Google Scholar

[20]

K. Wapenaar and J. Fokkema, Green's function representations for seismic interferometry,, Geophysics, 71 (2006).  doi: 10.1190/1.2213955.  Google Scholar

[21]

H. Yao, R. D. van der Hilst and M. V. de Hoop, Surface-wave array tomography in SE Tibet from ambient seismic noise and two-station analysis I. Phase velocity maps,, Geophysical Journal International, 166 (2006), 732.  doi: 10.1111/j.1365-246X.2006.03028.x.  Google Scholar

[1]

Josselin Garnier, George Papanicolaou. Resolution enhancement from scattering in passive sensor imaging with cross correlations. Inverse Problems & Imaging, 2014, 8 (3) : 645-683. doi: 10.3934/ipi.2014.8.645

[2]

Mathias Fink, Josselin Garnier. Ambient noise correlation-based imaging with moving sensors. Inverse Problems & Imaging, 2017, 11 (3) : 477-500. doi: 10.3934/ipi.2017022

[3]

Kaitlyn (Voccola) Muller. SAR correlation imaging and anisotropic scattering. Inverse Problems & Imaging, 2018, 12 (3) : 697-731. doi: 10.3934/ipi.2018030

[4]

Jingzhi Li, Hongyu Liu, Hongpeng Sun, Jun Zou. Imaging acoustic obstacles by singular and hypersingular point sources. Inverse Problems & Imaging, 2013, 7 (2) : 545-563. doi: 10.3934/ipi.2013.7.545

[5]

Ennio Fedrizzi. High frequency analysis of imaging with noise blending. Discrete & Continuous Dynamical Systems - B, 2014, 19 (4) : 979-998. doi: 10.3934/dcdsb.2014.19.979

[6]

Samuel T. Blake, Thomas E. Hall, Andrew Z. Tirkel. Arrays over roots of unity with perfect autocorrelation and good ZCZ cross-correlation. Advances in Mathematics of Communications, 2013, 7 (3) : 231-242. doi: 10.3934/amc.2013.7.231

[7]

Xiaohui Liu, Jinhua Wang, Dianhua Wu. Two new classes of binary sequence pairs with three-level cross-correlation. Advances in Mathematics of Communications, 2015, 9 (1) : 117-128. doi: 10.3934/amc.2015.9.117

[8]

Wenbing Chen, Jinquan Luo, Yuansheng Tang, Quanquan Liu. Some new results on cross correlation of $p$-ary $m$-sequence and its decimated sequence. Advances in Mathematics of Communications, 2015, 9 (3) : 375-390. doi: 10.3934/amc.2015.9.375

[9]

Yuhua Sun, Zilong Wang, Hui Li, Tongjiang Yan. The cross-correlation distribution of a $p$-ary $m$-sequence of period $p^{2k}-1$ and its decimated sequence by $\frac{(p^{k}+1)^{2}}{2(p^{e}+1)}$. Advances in Mathematics of Communications, 2013, 7 (4) : 409-424. doi: 10.3934/amc.2013.7.409

[10]

Hua Liang, Jinquan Luo, Yuansheng Tang. On cross-correlation of a binary $m$-sequence of period $2^{2k}-1$ and its decimated sequences by $(2^{lk}+1)/(2^l+1)$. Advances in Mathematics of Communications, 2017, 11 (4) : 693-703. doi: 10.3934/amc.2017050

[11]

João Borges de Sousa, Bernardo Maciel, Fernando Lobo Pereira. Sensor systems on networked vehicles. Networks & Heterogeneous Media, 2009, 4 (2) : 223-247. doi: 10.3934/nhm.2009.4.223

[12]

Atte Aalto, Jarmo Malinen. Compositions of passive boundary control systems. Mathematical Control & Related Fields, 2013, 3 (1) : 1-19. doi: 10.3934/mcrf.2013.3.1

[13]

Lassi Roininen, Markku S. Lehtinen, Sari Lasanen, Mikko Orispää, Markku Markkanen. Correlation priors. Inverse Problems & Imaging, 2011, 5 (1) : 167-184. doi: 10.3934/ipi.2011.5.167

[14]

Thanh-Tung Pham, Thomas Green, Jonathan Chen, Phuong Truong, Aditya Vaidya, Linda Bushnell. A salinity sensor system for estuary studies. Networks & Heterogeneous Media, 2009, 4 (2) : 381-392. doi: 10.3934/nhm.2009.4.381

[15]

Yves Coudière, Anđela Davidović, Clair Poignard. Modified bidomain model with passive periodic heterogeneities. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 0-. doi: 10.3934/dcdss.2020126

[16]

Ming Su, Arne Winterhof. Hamming correlation of higher order. Advances in Mathematics of Communications, 2018, 12 (3) : 505-513. doi: 10.3934/amc.2018029

[17]

Vladimír Špitalský. Local correlation entropy. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5711-5733. doi: 10.3934/dcds.2018249

[18]

Z. G. Feng, Kok Lay Teo, N. U. Ahmed, Yulin Zhao, W. Y. Yan. Optimal fusion of sensor data for Kalman filtering. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 483-503. doi: 10.3934/dcds.2006.14.483

[19]

Z.G. Feng, K.L. Teo, Y. Zhao. Branch and bound method for sensor scheduling in discrete time. Journal of Industrial & Management Optimization, 2005, 1 (4) : 499-512. doi: 10.3934/jimo.2005.1.499

[20]

Mariya Zhariy, Andreas Neubauer, Matthias Rosensteiner, Ronny Ramlau. Cumulative wavefront reconstructor for the Shack-Hartmann sensor. Inverse Problems & Imaging, 2011, 5 (4) : 893-913. doi: 10.3934/ipi.2011.5.893

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]