| Citation: |
| [1] |
R. A. Adams, "Sobolev Spaces," Academic Press, New York 1975. |
| [2] |
A. L. Bukhgeim and M. V. Klibanov, Global uniqueness of class of multidimensional inverse problems, Soviet Math. Dokl., 24 (1981), 244-247. |
| [3] |
C. Cavaterra, A. Lorenzi and M. Yamamoto, A stability result via Carleman estimates for an inverse source problem related to a hyperbolic integro-differential equation, Comput. Appl. Math., 25 (2006), 229-250. |
| [4] |
L. Hörmander, "Linear Partial Differential Operators," Springer-Verlag, Berlin, 1963. |
| [5] |
O. Yu. Imanuvilov, On Carleman estimates for hyperbolic equations, Asymptot. Anal., 32 (2002), 185-220. |
| [6] |
O. Yu. Imanuvilov and M. Yamamoto, Global uniqueness and stability in determining coefficients of wave equations, Comm. Partial Differential Equations, 26 (2001), 1409-1425.doi: 10.1081/PDE-100106139. |
| [7] |
O. Yu. Imanuvilov and M. Yamamoto, Global Lipschitz stability in an inverse hyperbolic problem by interior observations, Inverse Problems, 17 (2001), 717-728.doi: 10.1088/0266-5611/17/4/310. |
| [8] |
O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the non-stationary Lamé system and the application to an inverse problem, ESAIM Control Optim. Calc. Var., 11 (2005), 1-56.doi: 10.1051/cocv:2004030. |
| [9] |
O. Yu. Imanuvilov and M. Yamamoto, Carleman estimates for the three-dimensional non-stationary Lamé system and application to an inverse problem, Lect. Notes Pure Appl. Math., 242, Chapman & Hall/CRC, Boca Ratom, FL, 2005, 337-374. |
| [10] |
V. Isakov, "Inverse Source Problems," American Mathematical Society, Providence, Rhode Island, 1990. |
| [11] |
V. Isakov, Carleman type estimates in an anisotropic case and applications, J. Differential Equations, 105 (1993), 217-238.doi: 10.1006/jdeq.1993.1088. |
| [12] |
V. Isakov, Carleman estimates and applications to inverse problems, Milan J. Math., 72 (2004), 249-271.doi: 10.1007/s00032-004-0033-6. |
| [13] |
V. Isakov, "Inverse Problems for Partial Differential Equations," Springer-Verlag, Berlin, 2005. |
| [14] |
V. Isakov and M. Yamamoto, "Carleman Estimate with the Neumann Boundary Condition and its Applications to the Observability Inquality and Inverse Hyperbolic Problems," Differential geometric methods in the control of partial differential equations, Contemp. Math., vol. 268, Amer. Math. Soc. Providence 2000. |
| [15] |
M. V. Klibanov, Inverse problems and Carleman estimates, Inverse Problems, 8 (1992), 575-596.doi: 10.1088/0266-5611/8/4/009. |
| [16] |
M. V. Klibanov and M. Yamamoto, Lipschitz stability of an inverse problem for an acoustic equation, Appl. Anal., 85 (2006), 515-538.doi: 10.1080/00036810500474788. |
| [17] |
M. V. Klibanov and A. Timonov, "Carleman Estimates for Coefficient Inverse Problems and Numerical Applications," VSP, Utrecht, 2004. |
| [18] |
M. M. Lavrent'ev, V. G. Romanov and S. P. Shishat'skiĭ, "Ill-posed Problems of Mathematics Physics and Analysis," vol. 64, American Mathematical Society, Providence, Rhode Island, 1986. |
| [19] |
A. Lorenzi, F. Messina and V. G. Romanov, Recovering a Lamé kernel in a viscoelastic system, Applicable Analysis, 86 (2007), 1375-1395.doi: 10.1080/00036810701675183. |
| [20] |
J. Nečas, "Les Methodes Directes en Theorie des Equations Elliptiques," Masson, Paris, 1967. |
| [21] |
J. Nečas and I. Hlaváček, "Mathematical Theory Of Elastic And Elasto-Plastic Bodies: An Introduction," Elsevier, Amsterdam, 1981. |
| [22] |
V. G. Romanov, Carleman estimates for second-order hyperbolic equation, Siberian Math. J., 47 (2006), 135-151.doi: 10.1007/s11202-006-0014-9. |
| [23] |
V. G. Romanov, Stability estimates in inverse problems for hyperbolic equations, Milan J. Math., 74 (2006), 357-385.doi: 10.1007/s00032-006-0056-2. |
| [24] |
V. G. Romanov and M. Yamamoto, Recovering a Lamé kernel in a viscoelastic equation by a single boundary measurement, Appl. Anal., 89 (2010), 377-390.doi: 10.1080/00036810903518975. |
| [25] |
M. Yamamoto, Uniqueness and stability in multidimensional hyperbolic inverse problems, J. Math. Pures Appl., 78 (1999), 65-98.doi: 10.1016/S0021-7824(99)80010-5. |