May  2011, 5(2): 465-483. doi: 10.3934/ipi.2011.5.465

Near field sampling type methods for the inverse fluid--solid interaction problem

1. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716

2. 

Departamento de Matemáticas, Universidad de A Coruña, 15707 A Coruña

Received  April 2010 Revised  July 2010 Published  May 2011

The inverse fluid--solid interaction problem considered here is to determine the shape of an elastic body from pressure measurements made in the near field. In particular we assume that the elastic body is probed by pressure waves due to point sources, and the resulting scattered field and the normal derivative of the scattered field is available for every source and receiver combination on the source and measurement curves. We provide an analysis of the Reciprocity Gap (RG) method in this case, as well as the Linear Sampling Method (LSM). A novelty of our analysis is that we exhibit a connection between the RG method and a non--standard LSM using sources and receivers on different curves. We provide numerical tests of the algorithms using both synthetic and real data.
Citation: Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465
References:
[1]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects,, Inv. Prob., 22 (2006), 845.   Google Scholar

[2]

F. Cakoni and H. Haddar, "A New Linear Sampling Method for the Electromagnetic Imagining of Buried Objects,", in Mathematical methods in scattering theory and biomedical engineering, (2006), 19.  doi: 10.1142/9789812773197_0003.  Google Scholar

[3]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369.  doi: 10.1137/S0036144500367337.  Google Scholar

[4]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inv. Prob., 21 (2005), 383.   Google Scholar

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", 2nd edition, (1998).   Google Scholar

[6]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inv. Prob., 13 (1997), 1477.   Google Scholar

[7]

J. Elschner, G. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction,, Inverse Problems and Imaging, 2 (2007), 83.   Google Scholar

[8]

J. Elschner, G. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle,, SIAM J. Appl. Math., 70 (2009), 168.  doi: 10.1137/080736922.  Google Scholar

[9]

J. Elschner, G. Hsiao and A. Rathsfeld, Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves,, WAIS preprint No. 1479, (1479).   Google Scholar

[10]

T. Hargé, Valeurs propres d'un corps élastique,, C. R. Acad. Sci. Paris, 311 (1990), 857.   Google Scholar

[11]

G. Hsiao, R. Kleinman and G. F.Roach, Weak solutions of fluid-solid interaction problems,, Math. Nachr., (2000), 139.   Google Scholar

[12]

T. Huttunen, J. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction,, J. Comput. Appl. Math., 213 (2008), 166.  doi: 10.1016/j.cam.2006.12.030.  Google Scholar

[13]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering,, in Boundary Elements IX (eds. C. Brebbia, (1987), 3.   Google Scholar

[14]

C. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle,, SIAM J. Appl. Math., 55 (1995), 904.  doi: 10.1137/S0036139993259027.  Google Scholar

[15]

A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems,, J. Comput. Phys., 199 (2004), 205.  doi: 10.1016/j.jcp.2004.02.005.  Google Scholar

[16]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem,, Inverse Problems and Imaging, 3 (2009), 173.  doi: 10.3934/ipi.2009.3.173.  Google Scholar

[17]

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction problems,, Rendiconti di Matematica, 20 (2000), 57.   Google Scholar

show all references

References:
[1]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects,, Inv. Prob., 22 (2006), 845.   Google Scholar

[2]

F. Cakoni and H. Haddar, "A New Linear Sampling Method for the Electromagnetic Imagining of Buried Objects,", in Mathematical methods in scattering theory and biomedical engineering, (2006), 19.  doi: 10.1142/9789812773197_0003.  Google Scholar

[3]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369.  doi: 10.1137/S0036144500367337.  Google Scholar

[4]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inv. Prob., 21 (2005), 383.   Google Scholar

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", 2nd edition, (1998).   Google Scholar

[6]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inv. Prob., 13 (1997), 1477.   Google Scholar

[7]

J. Elschner, G. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction,, Inverse Problems and Imaging, 2 (2007), 83.   Google Scholar

[8]

J. Elschner, G. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle,, SIAM J. Appl. Math., 70 (2009), 168.  doi: 10.1137/080736922.  Google Scholar

[9]

J. Elschner, G. Hsiao and A. Rathsfeld, Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves,, WAIS preprint No. 1479, (1479).   Google Scholar

[10]

T. Hargé, Valeurs propres d'un corps élastique,, C. R. Acad. Sci. Paris, 311 (1990), 857.   Google Scholar

[11]

G. Hsiao, R. Kleinman and G. F.Roach, Weak solutions of fluid-solid interaction problems,, Math. Nachr., (2000), 139.   Google Scholar

[12]

T. Huttunen, J. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction,, J. Comput. Appl. Math., 213 (2008), 166.  doi: 10.1016/j.cam.2006.12.030.  Google Scholar

[13]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering,, in Boundary Elements IX (eds. C. Brebbia, (1987), 3.   Google Scholar

[14]

C. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle,, SIAM J. Appl. Math., 55 (1995), 904.  doi: 10.1137/S0036139993259027.  Google Scholar

[15]

A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems,, J. Comput. Phys., 199 (2004), 205.  doi: 10.1016/j.jcp.2004.02.005.  Google Scholar

[16]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem,, Inverse Problems and Imaging, 3 (2009), 173.  doi: 10.3934/ipi.2009.3.173.  Google Scholar

[17]

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction problems,, Rendiconti di Matematica, 20 (2000), 57.   Google Scholar

[1]

Peter Monk, Virginia Selgas. An inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2009, 3 (2) : 173-198. doi: 10.3934/ipi.2009.3.173

[2]

Andreas Kirsch, Albert Ruiz. The Factorization Method for an inverse fluid-solid interaction scattering problem. Inverse Problems & Imaging, 2012, 6 (4) : 681-695. doi: 10.3934/ipi.2012.6.681

[3]

Jingzhi Li, Jun Zou. A direct sampling method for inverse scattering using far-field data. Inverse Problems & Imaging, 2013, 7 (3) : 757-775. doi: 10.3934/ipi.2013.7.757

[4]

Johannes Elschner, George C. Hsiao, Andreas Rathsfeld. An inverse problem for fluid-solid interaction. Inverse Problems & Imaging, 2008, 2 (1) : 83-120. doi: 10.3934/ipi.2008.2.83

[5]

Francesca Bucci, Irena Lasiecka. Regularity of boundary traces for a fluid-solid interaction model. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 505-521. doi: 10.3934/dcdss.2011.4.505

[6]

Qiang Du, M. D. Gunzburger, L. S. Hou, J. Lee. Analysis of a linear fluid-structure interaction problem. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 633-650. doi: 10.3934/dcds.2003.9.633

[7]

Simopekka Vänskä. Stationary waves method for inverse scattering problems. Inverse Problems & Imaging, 2008, 2 (4) : 577-586. doi: 10.3934/ipi.2008.2.577

[8]

Fang Zeng, Pablo Suarez, Jiguang Sun. A decomposition method for an interior inverse scattering problem. Inverse Problems & Imaging, 2013, 7 (1) : 291-303. doi: 10.3934/ipi.2013.7.291

[9]

Qinghua Wu, Guozheng Yan. The factorization method for a partially coated cavity in inverse scattering. Inverse Problems & Imaging, 2016, 10 (1) : 263-279. doi: 10.3934/ipi.2016.10.263

[10]

David Bourne, Howard Elman, John E. Osborn. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part II: Analysis of Convergence. Communications on Pure & Applied Analysis, 2009, 8 (1) : 143-160. doi: 10.3934/cpaa.2009.8.143

[11]

Huai-An Diao, Peijun Li, Xiaokai Yuan. Inverse elastic surface scattering with far-field data. Inverse Problems & Imaging, 2019, 13 (4) : 721-744. doi: 10.3934/ipi.2019033

[12]

Stuart S. Antman, David Bourne. A Non-Self-Adjoint Quadratic Eigenvalue Problem Describing a Fluid-Solid Interaction Part I: Formulation, Analysis, and Computations. Communications on Pure & Applied Analysis, 2009, 8 (1) : 123-142. doi: 10.3934/cpaa.2009.8.123

[13]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. A stability estimate for fluid structure interaction problem with non-linear beam. Conference Publications, 2009, 2009 (Special) : 424-432. doi: 10.3934/proc.2009.2009.424

[14]

Emine Kaya, Eugenio Aulisa, Akif Ibragimov, Padmanabhan Seshaiyer. FLUID STRUCTURE INTERACTION PROBLEM WITH CHANGING THICKNESS NON-LINEAR BEAM Fluid structure interaction problem with changing thickness non-linear beam. Conference Publications, 2011, 2011 (Special) : 813-823. doi: 10.3934/proc.2011.2011.813

[15]

Teemu Tyni, Valery Serov. Inverse scattering problem for quasi-linear perturbation of the biharmonic operator on the line. Inverse Problems & Imaging, 2019, 13 (1) : 159-175. doi: 10.3934/ipi.2019009

[16]

Ariane Piovezan Entringer, José Luiz Boldrini. A phase field $\alpha$-Navier-Stokes vesicle-fluid interaction model: Existence and uniqueness of solutions. Discrete & Continuous Dynamical Systems - B, 2015, 20 (2) : 397-422. doi: 10.3934/dcdsb.2015.20.397

[17]

Qiang Du, Manlin Li, Chun Liu. Analysis of a phase field Navier-Stokes vesicle-fluid interaction model. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : 539-556. doi: 10.3934/dcdsb.2007.8.539

[18]

Peter Monk, Virginia Selgas. Sampling type methods for an inverse waveguide problem. Inverse Problems & Imaging, 2012, 6 (4) : 709-747. doi: 10.3934/ipi.2012.6.709

[19]

Armin Lechleiter, Marcel Rennoch. Non-linear Tikhonov regularization in Banach spaces for inverse scattering from anisotropic penetrable media. Inverse Problems & Imaging, 2017, 11 (1) : 151-176. doi: 10.3934/ipi.2017008

[20]

Jun Lai, Ming Li, Peijun Li, Wei Li. A fast direct imaging method for the inverse obstacle scattering problem with nonlinear point scatterers. Inverse Problems & Imaging, 2018, 12 (3) : 635-665. doi: 10.3934/ipi.2018027

2018 Impact Factor: 1.469

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (9)

Other articles
by authors

[Back to Top]