May  2011, 5(2): 465-483. doi: 10.3934/ipi.2011.5.465

Near field sampling type methods for the inverse fluid--solid interaction problem

1. 

Department of Mathematical Sciences, University of Delaware, Newark, DE 19716

2. 

Departamento de Matemáticas, Universidad de A Coruña, 15707 A Coruña

Received  April 2010 Revised  July 2010 Published  May 2011

The inverse fluid--solid interaction problem considered here is to determine the shape of an elastic body from pressure measurements made in the near field. In particular we assume that the elastic body is probed by pressure waves due to point sources, and the resulting scattered field and the normal derivative of the scattered field is available for every source and receiver combination on the source and measurement curves. We provide an analysis of the Reciprocity Gap (RG) method in this case, as well as the Linear Sampling Method (LSM). A novelty of our analysis is that we exhibit a connection between the RG method and a non--standard LSM using sources and receivers on different curves. We provide numerical tests of the algorithms using both synthetic and real data.
Citation: Peter Monk, Virginia Selgas. Near field sampling type methods for the inverse fluid--solid interaction problem. Inverse Problems & Imaging, 2011, 5 (2) : 465-483. doi: 10.3934/ipi.2011.5.465
References:
[1]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects,, Inv. Prob., 22 (2006), 845.   Google Scholar

[2]

F. Cakoni and H. Haddar, "A New Linear Sampling Method for the Electromagnetic Imagining of Buried Objects,", in Mathematical methods in scattering theory and biomedical engineering, (2006), 19.  doi: 10.1142/9789812773197_0003.  Google Scholar

[3]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369.  doi: 10.1137/S0036144500367337.  Google Scholar

[4]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inv. Prob., 21 (2005), 383.   Google Scholar

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", 2nd edition, (1998).   Google Scholar

[6]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inv. Prob., 13 (1997), 1477.   Google Scholar

[7]

J. Elschner, G. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction,, Inverse Problems and Imaging, 2 (2007), 83.   Google Scholar

[8]

J. Elschner, G. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle,, SIAM J. Appl. Math., 70 (2009), 168.  doi: 10.1137/080736922.  Google Scholar

[9]

J. Elschner, G. Hsiao and A. Rathsfeld, Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves,, WAIS preprint No. 1479, (1479).   Google Scholar

[10]

T. Hargé, Valeurs propres d'un corps élastique,, C. R. Acad. Sci. Paris, 311 (1990), 857.   Google Scholar

[11]

G. Hsiao, R. Kleinman and G. F.Roach, Weak solutions of fluid-solid interaction problems,, Math. Nachr., (2000), 139.   Google Scholar

[12]

T. Huttunen, J. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction,, J. Comput. Appl. Math., 213 (2008), 166.  doi: 10.1016/j.cam.2006.12.030.  Google Scholar

[13]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering,, in Boundary Elements IX (eds. C. Brebbia, (1987), 3.   Google Scholar

[14]

C. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle,, SIAM J. Appl. Math., 55 (1995), 904.  doi: 10.1137/S0036139993259027.  Google Scholar

[15]

A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems,, J. Comput. Phys., 199 (2004), 205.  doi: 10.1016/j.jcp.2004.02.005.  Google Scholar

[16]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem,, Inverse Problems and Imaging, 3 (2009), 173.  doi: 10.3934/ipi.2009.3.173.  Google Scholar

[17]

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction problems,, Rendiconti di Matematica, 20 (2000), 57.   Google Scholar

show all references

References:
[1]

F. Cakoni, M. Fares and H. Haddar, Analysis of two linear sampling methods applied to electromagnetic imaging of buried objects,, Inv. Prob., 22 (2006), 845.   Google Scholar

[2]

F. Cakoni and H. Haddar, "A New Linear Sampling Method for the Electromagnetic Imagining of Buried Objects,", in Mathematical methods in scattering theory and biomedical engineering, (2006), 19.  doi: 10.1142/9789812773197_0003.  Google Scholar

[3]

D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory,, SIAM Rev., 42 (2000), 369.  doi: 10.1137/S0036144500367337.  Google Scholar

[4]

D. Colton and H. Haddar, An application of the reciprocity gap functional to inverse scattering theory,, Inv. Prob., 21 (2005), 383.   Google Scholar

[5]

D. Colton and R. Kress, "Inverse Acoustic and Electromagnetic Scattering Theory,", 2nd edition, (1998).   Google Scholar

[6]

D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving inverse scattering problems,, Inv. Prob., 13 (1997), 1477.   Google Scholar

[7]

J. Elschner, G. Hsiao and A. Rathsfeld, An inverse problem for fluid-solid interaction,, Inverse Problems and Imaging, 2 (2007), 83.   Google Scholar

[8]

J. Elschner, G. Hsiao and A. Rathsfeld, An optimization method in inverse acoustic scattering by an elastic obstacle,, SIAM J. Appl. Math., 70 (2009), 168.  doi: 10.1137/080736922.  Google Scholar

[9]

J. Elschner, G. Hsiao and A. Rathsfeld, Comparison of numerical methods for the reconstruction of elastic obstacles from the far-field data of scattered acoustic waves,, WAIS preprint No. 1479, (1479).   Google Scholar

[10]

T. Hargé, Valeurs propres d'un corps élastique,, C. R. Acad. Sci. Paris, 311 (1990), 857.   Google Scholar

[11]

G. Hsiao, R. Kleinman and G. F.Roach, Weak solutions of fluid-solid interaction problems,, Math. Nachr., (2000), 139.   Google Scholar

[12]

T. Huttunen, J. Kaipio and P. Monk, An ultra-weak method for acoustic fluid-solid interaction,, J. Comput. Appl. Math., 213 (2008), 166.  doi: 10.1016/j.cam.2006.12.030.  Google Scholar

[13]

A. Kirsch and R. Kress, An optimization method in inverse acoustic scattering,, in Boundary Elements IX (eds. C. Brebbia, (1987), 3.   Google Scholar

[14]

C. Luke and P. A. Martin, Fluid-solid interaction: acoustic scattering by a smooth elastic obstacle,, SIAM J. Appl. Math., 55 (1995), 904.  doi: 10.1137/S0036139993259027.  Google Scholar

[15]

A. Márquez, S. Meddahi and V. Selgas, A new BEM-FEM coupling strategy for two-dimensional fluid-solid interaction problems,, J. Comput. Phys., 199 (2004), 205.  doi: 10.1016/j.jcp.2004.02.005.  Google Scholar

[16]

P. Monk and V. Selgas, An inverse fluid-solid interaction problem,, Inverse Problems and Imaging, 3 (2009), 173.  doi: 10.3934/ipi.2009.3.173.  Google Scholar

[17]

D. Natroshvili, S. Kharibegashvili and Z. Tediashvili, Direct and inverse fluid-structure interaction problems,, Rendiconti di Matematica, 20 (2000), 57.   Google Scholar

[1]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[2]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[3]

Adam Glick, Antonio Mastroberardino. Combined therapy for treating solid tumors with chemotherapy and angiogenic inhibitors. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020343

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[6]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[7]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[8]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[9]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[10]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[11]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[12]

Illés Horváth, Kristóf Attila Horváth, Péter Kovács, Miklós Telek. Mean-field analysis of a scaling MAC radio protocol. Journal of Industrial & Management Optimization, 2021, 17 (1) : 279-297. doi: 10.3934/jimo.2019111

[13]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[14]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[15]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[16]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[17]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[18]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[19]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[20]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

2019 Impact Factor: 1.373

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (16)

Other articles
by authors

[Back to Top]